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The complex world of networks 
Networks are many and diverse. Can we simplify it? Or at least the discussion of it? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Need for NeMS 
Let us explore the need and motivation to perform Network Modeling and Simulation (NeMS) by 
looking at the technology landscape. The landscape consists of the people, technology and their 
relationships. 
 
Technology Landscape 

1. Communications systems: Evolving rapidly 
2. User demands: High performance networks 
3. Service providers: Rapidly expanding their network infrastructure 

 
Network researchers face the protocol war by developing new communications techniques, 
architectures and capabilities. Equipment vendors are releasing new devices with increasing 
capability and complexity. Technology developers and OEMs are developing NG equipment. 
Network designers and developers are working on how to satisfy the QoS demands of users amidst 
emerging technologies and techniques viz a viz legacy counterparts? Network Engineer in 
operations is thinking about what is the right approach to solving problems? Do I buy latest device 
from company X that claims to solve all my problems? Do I replace underlying technology of my 
system with the latest generation? Next Generation Network Architect wonders how do I know how 
this new approach will interact with already existing protocols? How do I build confidence in the 
utility of this approach without producing and deploying the technology? Is there one solution? 
Actually not! There are various ways to answer and satisfy the goal seekers. These include 

 Prototyping & empirical testing 
 Trial field deployment 
 Modeling and Simulation (M & S) 
 Analysis 

 
The order represents decreasing costs but increasing abstraction. It is upto the network engineer to 
trade them off. 
 
 



What is NeMS? 
Network Modeling and Simulation is often considered a single term. In reality, it is not! Simulation 
is the imitation of behaviour of real-world system or Computational re-enactment according to rules 
described in model. Whereas modeling is a step that precedes simulations. Together they form an 
iterative process approximating the real world systems. Model is the logical representation of a 
complex entity, system, phenomena or a process. In communications, network model could be 
analytical representation, mathematical form as a state Machine or closed or approximate form. 
Computer simulation is the execution of computer software that reproduces behavior with a certain 
degree of accuracy to provide visual insight. It is basically a template on which a computer program 
runs. It has 

 Inputs 
 Outputs 
 Behaviour 

 
Formally, simulations are pieces of computer software that implement algorithms, take inputs and 
give outputs. 
 
The model definition could be 

 Descriptive 
 Analytical 
 Mathematical 
 Algorithmic 

 
The computer models can be described into various types 

 Stochastic vs Deterministic 
 Continuous vs discrete 
 Steady state vs Dynamic 
 Local or Distributed 
 Linear or nonlinear 
 Open or closed 
  

These models must be applied according to the perspective. It is important to Model only what you 
understand. Likewise, understanding your model is equally necessary. Model what you need & no 
more so that it is neither underdefined nor overdefined. 
 
Simulation Building Process 
Consider a one hop communication scenario between two wireless notebooks connected through a 
WiFi AP. The simulation entities would include wireless computers and their packets (multiple 
instances), WiFi AP (single instance), and a traffic generator (single instance) that creates wireless 
computers and their packets. The states of the system would include WiFi AP (idle or busy). Each 
computer generates a number of packets with each packet successful/failed. The events would 
include wireless computer creation, packet generation, wireless AP activity. Queues would be 
needed to schedule the events. These would contain frames waiting in output queue of wireless 
computer and frames (packets) at WiFi AP input queue. To make the simulation exciting, dynamic 
and insightful, randomization has to be performed. These would include random realizations of 
packet lengths, no. of frames per wireless computer, no. of wireless computers, BER (and PER) and 
packet drop ratio in WiFi AP input queue. It is further needed to distribute various entities and 
events. The distributions could include Uniform and Gaussian etc for packet lengths and no. of 
frames per wireless computer. 
 
 



How Does The Simulation Run? 
Following steps are executed during the running of the simulation. 

 Inputs created/initialized 
 Events of transmission, reception and noise occur 
 Randomness causes queues to behave and err 
 Packet successes/failures 
 Simulation logs are compiled and presented as the output in desirable formats 

 
Components of a simulator 

 A self-contained program 
 Event queue 
 Simulation clock 
 State variables 
 Event routines 
 Input routine 
 Report generation routine 
 Initialization routine 
 Main program 

 
Types of simulations 

 Monte Carlo simulation 
 Trace driven 
 Discrete events 
 Continuous events 

 
 

 
When to simulate 

 Analytical model not feasible (complex) 
 Analytical model not possible (too simple) 
 Simulate to verify analysis 
 Otherwise simulations are unnecessary 

 
 



 
When not to simulate 

 Analytical model gives good enough representation 
 Simulation takes months 
 Simulation is expensive 
 Simulation is non-scalable 

 
 

General mistakes 
 Inappropriate levels of details  
 Improper selection of programming language 
 Unverified models 
 Improper initial conditions  
 Short run times  
 Poor random number generators  
 Inadequate time estimate 
 No achievable goals 
 Incomplete mix of essential skills  
 Inadequate level of user participation 
 Inability to manage simulation project 

 

 
 
 
 
Inappropriate levels of details 

 Include what is relevant 
 Too fine simulations computationally heavy 

 Many interdependent parameters 
 Difficult to assess their interplay 

 Tip: Necessity & sufficiency 
 
Improper programming language 



 Scope & type of simulation determine best choice 
 Object oriented vs. procedural 

– Types/diversity of simulation parameters 
 Interpreted vs. compiled 

– Machine dependence 
– Speed 
–  

Unverified models 
 Programming is non trivial 
 Semantic mistakes 
 make simulations get 
 Wrong results 
 Misleading results 
 Modular verification a must 

 
Improper initial conditions 

 Initial condition not steady state 
 Often a late realization 
 Surprisingly wrong results 
 May never converge 

 
Short run times 

 Strong dependence on Initial conditions 
 Don't achieve true 
 steady state 

 
Poor random number generators 

 Lacking pseudo-random sequence leads to predictability 
 Wrong choice of seed value could cause inadvertent correlation between processes 

– Use celebrated RNGs 
 
Inadequate time estimate 

 Models overstate the simulations 
– Implementations get delayed 

 Software development life cycle must assess model complexity 
 
No achievable goals 

 Goals not defined 
– Tangible output analysis 
– Logs and trace files 

 Goals are unreal 
– Affects simulation complexity and implementation 

 
Incomplete mix of essential skills 

 Domain knowledge 
 Statistics 
 Programming 
 Project management 
 Past experience 

 
Inadequate level of user participation 



 From modeling to implementation 
 UI design 
 Output analysis 

 
Inability to manage simulation project 

 Simulations are not monolithic 
 Need software engineering tools 

– Multivariate design 
– Code management 
– Track changes 

 
 

Simulation inaccuracies 
 Over reliance on link budget methods for abstraction 
 Overly simplistic modeling of radio layers 

 
Over reliance on link budget methods for abstraction 

 Link budget losses overly static 
– Fair enough for steady state analysis 
– Dynamic analysis not possible 

 Results are misleading 
 
Overly simplistic modeling of radio layers 

 Lowest layer often ignored 
– No bit level BER & delay 

 Often the Achilles heel 
 Wrong results in highly dynamic use cases 

 
Development of Systems Simulation 
 

A “Still I am not dead yet!” scenario 

                                             
 
Available                                                                                Not available 
h = height (feet)                                                                      Mass of object 
t = time in motion (seconds)                                                   Air resistance 
v = initial velocity (feet per second, + is up)                          Location of object 
s = initial height (feet) 
a = acceleration (feet per second per second) 
 
 
 
 
 
  /* Height of an object moving under gravity. */ 

/* Initial height s and velocity v constants. */ 
main() 

{ 
 float h, v = 100.0, s = 1000.0; 

 int t; 



 
 
 
 

 
 
 
 
 
 
 
 
 

                              
 
Development Process 

 Problem formulation 
 Data collection & analysis 
 Simulation development 
 Model validation, verification, & calibration 
 “What-if” analysis 
 Sensitivity estimation 

 
Problem formulation 

 Identify controllable and uncontrollable inputs 
 
Data collection & analysis 

 What to collect 
 How much to collect 
 Cost and accuracy trade off 

 
Simulation development 

 Codify, codify and codify! 
 
Model validation, verification, & calibration 

 Validation 
 Is it the right system? 
 Emulates real phenomenon 

 
Model validation, verification, & calibration 

 Verification 
 Are we building the system right? 
 Implementation must correspond to the model 

Model validation, verification, & calibration 



 Calibration 
 Parameter estimation 
 Tweaking/tuning to ensure that simulated data follows real data 

 
“What-if” analysis 

 Performance measures with different inputs 
 
Sensitivity analysis 

 Relative importance of different parameters with respect to output 
 Even with respect to each other 

 
 
Life cycle of Simulation Development 

 
 
 
Recommended Text and References 

 
NeMS contents cover 

 Well known mathematical models, equations and forms 
 Widely used simulation tools and code reusability 
 Their inter-relationship 

 
 
 NeMS contents don't cover 



 Mathematical derivations from scratch 
 Programming dexterity 

 
Uptill now 
Basics of NeMS 

 Mohsen Guizani et al, “Network Modeling and Simulation” John Wiley , 2010. 

 
 

Basics of NeMS 
 Jack Burbank et al, “An Introduction to Network Modeling & Simulation for the Practicing 

Engineer” John Wiley , 2011. 

 
 
Basics of NeMS 

 John A. Sokolowski & Catherine M. Banks, “Modeling and Simulation Fundamentals” John 
Wiley , 2010. 

 
 
Next Roadmap 
 

 
 

 

             
 
 

 TicToc tutorial 



 OMNET++ Manual 
 Website:  https://omnetpp.org 
 INET Framework for OMNeT++  
 OMNET++ Wiki 
 Mixim Sourceforge Page 

 
 
Introduction to OMNET++ 
What is OMNET++ 

 Objective Modular Network Testbed in C++ 
– Simulation kernel 
– Component-based simulation library 

 A framework, not a simulator 
 Designed to create & simulate any network 
 

Simulation Kernel 
 

 
 
 
 
Getting a free copy 

 www.omnetpp.org 
 Download the latest release (4.6 in our case) 

                                        “Omnetpp-4.6-src-windows.zip” 
 Complete folder 

– C++ compiler 
– CMD line build environment 

 Download source code 
 
Compile & Install 

http://www.omnetpp.org/


 Compiling and installing on Windows self-contained 
 Enter OMNeT++ folder that you unzipped 
 Run the file called Mingwenv.cmd 

 
 
 
 
 
 
 
Compile & Install 

 When terminal appears, enter the commands 
             /.configure 

              Make 
 
 

                                         
 
 
Debug mode 

 Does not optimize the binary it produces 
 Source code and generated instructions relationship is complex 
 Allows accurate breakpoints setting 
 Allows code step-through one line at a time 
 Compiled with full symbolic debug information 

 
Release mode 

 Enables optimizations 
 Generates instructions without any debug data 
 Lots of code could be completely removed or rewritten 
 Resulting executable may not match with written code 

 
Running first time 

 OMNeT++ comes with an Eclipse-based Simulation IDE 
 Type omnetpp 

 

Minimum GNU environment for Windows 
Compilers provide access to functionality 
Of Microsoft C runtime and some 
Language-specific runtimes 

Build process produces 
Debug and release 

Binaries 

Debug is elaborate 
But slow 

Release is optimized 
& fast 



 
Select the default workspace 

 A workspace is a logical collection of projects 
 A workspace called p2p may contain only peer to peer applications 
  

 
 
Design of OMNET++ 
 
 

 
 
Model Structure 

 Model consists of modules 
 Modules communicate with message passing 
 Modules are C++ files 

– Implement simulation class library 
– Run in simulation kernel 

 



 Module types 
– Simple (active modules) 
– Compound 

 
 Simple modules can be grouped into compound modules and so forth 
 Modules communicate through gates (connections) 

– Directly between modules or through intermediaries 
 

 
 

No. of hierarchy levels not limited 
 

 
 

 Gates 
– Gates 
– Input output interfaces of modules 
– Allow message passing 
– Linked via connection (TPROP, RDATA, BER) Input output interfacing 

 
 

 
 

 
 

 
 
 

 

1. Define 
Module 
Types 

2. Instantiate 
them 3. Network implements system model 



 
 

 Channels 
– Connection types with specific properties 
– Reusable at several places 
– Standard Host talking to another Standard Host via an Ethernet cable 

 
 Message; tuple (time stamp, arbitrary data, ...) 
 Network; A compound module with no external gates 

 
Module Parameters 

 Pass configuration data to simple modules 
 Define model topology 
 String, numeric, boolean 
 Constants, random numbers 
 Expressions as references 

 

 
 

 
Internal architecture of OMNET++ 
 
OMNeT++ simulation programs possess a modular structure. 
 



 
 
Model Component Library 

 Consists of the code of compiled simple and compound modules 
 
Simulation Kernel & SIM Class Library  

 Modules are instantiated and concrete simulation model is built by simulation kernel 
 SIM covers most of the common simulation tasks through classes 

– Generate random number (distributions) 
– Queues (F IFO, priority) 

 Messages (hold arbitrary data structures) 
 Routing (explore topology, generate graph data structure) 

 
Envir, Cmdenv and Tkenv Libraries 

 Simulation executes in an environment 
 Defines and determines 

– Where input data come from 
– Where simulation results go to 
– What happens to debugging output?  
– Controls the simulation execution 
– How model is visualized 

What is NED Language? 
 A network description language 
 Creates network topologies in OMNeT++ 
 You create alternately create topology graphically as well 
 Correspondingly NED source code  is automatically generated 
 

Typical Ingredients of NED description 
 Network definitions 
 Compound module definitions 
 Simple module declarations 

 
Network Definition 

 Network definitions are compound modules 
– Self-contained simulation models 

 
Simple Module Declaration 



 Describes the interface of modules 
– Gates 
– Parameters 

Compound module definitions 
 Declaration of external interface 

– Gates 
– Parameters 

 Definition of  
– Sub modules 
– Their interconnections 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us create a topology called My_Network using Graphical Editor 
 

                     

 Network name 
= 

My_Network  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Module name 
= 

My_Module  

 Compound module 
name= 

standardHost  

 Inside  
standardHost  



 
 
 
 
 
 
 
 
\ 
 

More About NED Language 
 Inheritance 
 Modules and channels can be subclassed 
 Derived modules and channels may add 
– New parameters 
– Gates 
 Similarly compound modules may add 
– New parameters 
– Connections 

 
Example 
 
 
 
 
 
 
 
 
 

 
 

Interface instantiation 
 Module and channel interfaces can be used as a placeholder 

– where normally a module or channel type would be used 
 Concrete module or channel type determined 

– At network setup time by a parameter 
 
Example: 
 

 
 
 
 
 
 
 
 
 
 
 
 

GenericTCPClientApp  Module  

Derived 
(Extended) 
Module 

FTPApp 

BaseHost 

BaseHost + WebClientApp 

Simple 
Compound 

ConstantSpeedMobility 

 

RandomWayPointMobility 

Run time 

IMobility 

 MobileHost compound module 

Design time 
 



 
 

 
 
Packages 

 Addresses name clashes between different models 
 Simplifies specifying which NED files are needed by a specific simulation model 

 
 Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Configuring OMNET++ Simulations 
 
Separation of Model and Experiments 

 Always good practice to try to separate different aspects of simulation 
 Model topology 

– NED file 
– MSG file 

 Model behavior 
– C++ code 

 Provides cleaner model 
 

Configuring simulations 
 How to capture the effect of different inputs? 

– Run to run variables 
 C++ and NED code do not have such variables 
 INI files provide a mechanism to specify these parameters 

– omnet.ini 
 
INI File Syntax 

package book.simulations; 
Package is a mechanism to organize various classes and files. The simulation project 
 inside of OMNeT++ is called "Book" and this NED file is found in the "simulations" folder of 
the 
Project. 



 Basically an ASCII text file 
 Consists of  

– Key-value pairs 
                              <key>=<value> 
 
INI File Editor 

 INI File Editor lets the user configure simulation models for execution 
 Both form-based and source editing 

 
 
 
 
 
 
INI File Editor 

 Considers all NED declarations 
– Simple modules 
– Compound modules 
– Channels, etc 

 Fully relates this information to the INI file contents 
 Editor knows which INI file keys match which module parameters 

 
 
 
 
 
Example omnet.ini 
 
 
 
 
 
 
 [General] 

network = book.simulations.My_Network 

#We will make standardHost a TCP Session Application in 
order for it to communicate# 

**.standardHost.numTcpApps = 1 

No of Apps 

My_Network 
wildcarded as ** 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[General] 

network = book.simulations.My_Network 

#We will make standardHost a TCP Session Application in 
order for it to communicate# 

**.standardHost.numTcpApps = 1 

**.standardHost.tcpApp[0].typename = "TCPSessionApp" 

**.standardHost.tcpApp[0].connectAddress = "standardHost1" 

**.standardHost.tcpApp[0].connectPort = 1000 

#We will make standardHost1 a TCP Echo Application, this 
means that it 
will send #an echo packet once it receives a packet. 
**.standardHost1.numTcpApps = 1 

**.standardHost1.tcpApp[0].typename = "TCPEchoApp" 

**.standardHost1.tcpApp[0].localPort = 1000 

**.standardHost1.tcpApp[0].echoFactor = 3.0 

#**.ppp[*].queueType = "DropTailQueue" 

Application Name 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[General] 

network = book.simulations.My_Network 

#We will make standardHost a TCP Session Application in order for 
it to communicate# 

**.standardHost.numTcpApps = 1 

**.standardHost.tcpApp[0].typename = "TCPSessionApp" 

**.standardHost.tcpApp[0].connectAddress = "standardHost1" 

**.standardHost.tcpApp[0].connectPort = 1000 

#We will make standardHost1 a TCP Echo Application, this means 
that it 
will send #an echo packet once it receives a packet. 
**.standardHost1.numTcpApps = 1 

**.standardHost1.tcpApp[0].typename = "TCPEchoApp" 

**.standardHost1.tcpApp[0].localPort = 1000 

**.standardHost1.tcpApp[0].echoFactor = 3.0 

#**.ppp[*].queueType = "DropTailQueue" 

Who to 
connect 

with whom 

[General] 

network = book.simulations.My_Network 

#We will make standardHost a TCP Session Application in order for it 
to communicate 

**.standardHost.numTcpApps = 1 

**.standardHost.tcpApp[0].typename = "TCPSessionApp" 

**.standardHost.tcpApp[0].connectAddress = "standardHost1" 

**.standardHost.tcpApp[0].connectPort = 1000 

#We will make standardHost1 a TCP Echo Application, this means 
that it will send #an echo packet once it receives a packet. 
**.standardHost1.numTcpApps = 1 

**.standardHost1.tcpApp[0].typename = "TCPEchoApp" 

**.standardHost1.tcpApp[0].localPort = 1000 

**.standardHost1.tcpApp[0].echoFactor = 3.0 

#**.ppp[*].queueType = "DropTailQueue" 

#**.ppp[*].queue.frameCapacity = 10 

#**.eth[*].queueType = "DropTailQueue" 

Which port to 
connect to 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[General] 

network = book.simulations.My_Network 

#We will make standardHost a TCP Session Application in order for it to 
communicate 

**.standardHost.numTcpApps = 1 

**.standardHost.tcpApp[0].typename = "TCPSessionApp" 

**.standardHost.tcpApp[0].connectAddress = "standardHost1" 

**.standardHost.tcpApp[0].connectPort = 1000 

#We will make standardHost1 a TCP Echo Application, this means that it will 
send #an echo packet once it receives a packet. 
**.standardHost1.numTcpApps = 1 

**.standardHost1.tcpApp[0].typename = "TCPEchoApp" 

**.standardHost1.tcpApp[0].localPort = 1000 

**.standardHost1.tcpApp[0].echoFactor = 3.0 

#**.ppp[*].queueType = "DropTailQueue" 

#**.ppp[*].queue.frameCapacity = 10 

#**.eth[*].queueType = "DropTailQueue" 

Reply size = 
Echo Packet* EF 

[General] 

network = book.simulations.My_Network 

#We will make standardHost a TCP Session Application in order for it to 
communicate 

**.standardHost.numTcpApps = 1 

**.standardHost.tcpApp[0].typename = "TCPSessionApp" 

**.standardHost.tcpApp[0].connectAddress = "standardHost1" 

**.standardHost.tcpApp[0].connectPort = 1000 

#We will make standardHost1 a TCP Echo Application, this means that it will 
send #an echo packet once it receives a packet. 
**.standardHost1.numTcpApps = 1 

**.standardHost1.tcpApp[0].typename = "TCPEchoApp" 

**.standardHost1.tcpApp[0].localPort = 1000 

**.standardHost1.tcpApp[0].echoFactor = 3.0 

#**.ppp[*].queueType = "DropTailQueue" 

#**.ppp[*].queue.frameCapacity = 10 

#**.eth[*].queueType = "DropTailQueue" 

Queuing behaviour 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Example 
 

[General] 

network = book.simulations.My_Network 

#We will make standardHost a TCP Session Application in order for it to 
communicate 

**.standardHost.numTcpApps = 1 

**.standardHost.tcpApp[0].typename = "TCPSessionApp" 

**.standardHost.tcpApp[0].connectAddress = "standardHost1" 

**.standardHost.tcpApp[0].connectPort = 1000 

#We will make standardHost1 a TCP Echo Application, this means that it will 
send #an echo packet once it receives a packet. 
**.standardHost1.numTcpApps = 1 

**.standardHost1.tcpApp[0].typename = "TCPEchoApp" 

**.standardHost1.tcpApp[0].localPort = 1000 

**.standardHost1.tcpApp[0].echoFactor = 3.0 

#**.ppp[*].queueType = "DropTailQueue" 

#**.ppp[*].queue.frameCapacity = 10 

#**.eth[*].queueType = "DropTailQueue" 

Buffer Size 



 
 
 
 

Building Simulation Programs 
 
Using GUI Project Builder 

 Initial build takes longer on indexing before building the project 
 Dependency generation in the generated make files 

– Classes, functions, methods, variables, macros 
 

 
 
 
 
Using Mingwenv 

 Once you have the source files ( *.ned, *.msg, *.cc, *.h) in a directory 
– Change the working directory to there 



 Type 
                        $ opp_makemake 

 This will create a file named Makefile 
 Type 

                        $ make 
                  Your simulation program should build 

 
 
 
 
 
Where to next! 
 

 
 
Running Simulations 
 
What is Simulation Run? 

 Launch the built project make file 
 
OMNET++ IDE Features 

 Single runs 
 Batch runs 
 Run numbers 
 Graphical mode (Tkenv) 
 Command mode(Cmdenv) 
 Simulation configuration 
 Recording event logs 
 Debug support 

 
Quick Run 

 In Project Explorer, select a project 
 Clicking Run button on the toolbar 
 Runs vary 

– Folder 

A makefile is used to tell the compiler which source files you want to compile. 
It'll also do things like name your executable and place it in a specific location. 



• Runs if single ini file present 
– ini file 

• Use this as the main ini file 
– NED file 

• Scan for available ini file 
Launch Configuration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Animation and Tracing 
OMNeT++ is capable of 

 Animating 
– Flow of messages on network charts 

 Reflecting 
– State changes of the nodes in the display 

 Animation is automatic 
 No programming need for simulating engineer 
 Suitable network simulations 

– Rarely need fully customizable animation capabilities 
 
Simulation Tracing 

 Simple modules may write textual debug (trace) information like printf() 
 OMNET++ provides Module output window 
– Special window to display output stream 
 Eases following the module execution 

 

Run omnet.ini 
From /queuenet 

queuenet Launch 
Configuration 

One or more 
ini files 

Run 
numbe

r 
R = 0 
One 

omnet.

Directories where 
the NED files 
are read from 



Simulation Object Inspection 
 An object inspector is a GUI window associated with a simulation object 

– Displays contents and properties 
 Three types 

– Network Display 
– Log Viewer 
– Object Inspector 

 
Tkenv  
Tkenv is a graphical runtime interface for simulations 

 It provides 
– Network visualization 
– Message flow animation 
– Log of message flow 
– Display of textual module logs 

 Inspectors 
 Visualization of statistics 

– Histograms, etc. during simulation execution 
 Event log recording for later analysis 

 
 
 
 
 
 
 
 
 
 
 
Tkenv in action  
  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Timeline 
Future Events Set (FES) on log scale 

Object inspector 

Network 
display Log 

viewer 



 
 
 
 

Organizing and Performing Experiments 
 
Need for organizing experiments 
Stuart Kurkow, “MANET Simulation 
Studies: 
The Incredibles,” ACM’s Mobile Computing and Communications 
Review, 9(4): 
50-61, 2005 
Repeatable 

 Fellow researcher should be able to repeat 
Unbiased 

 Results must not be specific to scenario used in experiment 
Rigorous 

 Scenarios & conditions for experiments must be truly representative 
Statistically sound 

 Experiments results must not violate mathematical principles 

 
 

 
Relationship between terminologies 



 
How to organize experiments 
Model 

 The executable 
 (C++ files & external libraries + NED files 
 Invariant for the  purpose of experimentation 
 INI file not part of model 

Study 
 One or more experiments to investigate a phenomenon 
 Usually many experiments 
 One or more models 

Experiment 
 Exploration of a parameter space on a model 
 Only and only one model 

Measurement 
 A set of simulation runs on the same model with same parameters 
 Characterized by INI file 
 But with different seeds 
 May involve replication for averaging out 

Replication 
 One repetition of a measurement 
 Replication can be characterized by the seed values it uses 

Run 
 One instance of running the simulation 
 Characterized by exact time date  
 computer (host name) 

 
Example 
 
 
 
 
 
 

Handover 
optimization  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Sequence Charts 
 
Event Log Tables 

 An event log file contains 
― Tabulated log of messages sent during simulation 

 Between modules 
 Self-messages (timers) 

― Event details that prompts such sending or reception 
 User can control 

― Amount of data recorded from messages 
― Start/stop time 
― Which modules to include in the log 

 
Event Log File Creation (1 of 2) 

 Type 
            $ record-eventlog = true 

 Output placed in 
           /results directory 

 Filename 
            ${configname}-${runnumber}.elog 
 
Using INI file event log configuration 

 

Mobile 
IPv6 
nodes 

Effect of 
No. of hosts 
Traffic load 

No of hosts 
= 10 
Load 
= 3.8 

Record event 



Sequence Chart 
 Displays event log files in a graphical form 
• Helps focus on causes & consequences of events/messages 
• Helps users understand 

― Complex simulation models 
― Verify implementation for desired behavior 

 
Understanding the legend: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Compound module 
Axis 

Compound module 
Axis 

Axis with attached 
Vector data 

Module full path 
as axis label 

Self-message 
Processing event 

Initialization event 

Message processing  
Event 

Event number 

Self-message 
Message send  



 
 

 
 

 
 



      
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Parts of Sequence Charts 
 



 
 

 
 
  
 
 
 
 
 
 

 
 



 
 

 
 
 
 
 
 
 
 
 
 

What is Timeline? 



 Simulation time mapped onto the horizontal axis 
 Various ways 

– Intervals between interesting events often of different magnitudes 
 Example 

– MAC (ms) 
– Higher layers (ms) 

 
Types of Timeline 

 Linear: simulation time proportional to distance measured in pixels 
 Event number: event number proportional to the distance measured in pixels 
 Step: distance between subsequent events is same 
 Nonlinear: distance between subsequent events is nonlinear function of simulation time 

between them 
 
Interpreting Sequence Charts 

 Zero Simulation Time Regions 
 Gutter 
 Events 
 Messages 
 Displaying Module State on Axes 

 
Zero Simulation Time Regions 
 

 
 
 
 
 
 
 
Gutter 
 



 
 
Events Processing 
 

           

  
 
Messages 

\ 
 
 
 

Displaying Module State on Axes 
 



         
 
TicToc Tutorial 
TicToc with 2-nodes 

• Two nodes, Tic and Toc 
• One node initializes by sending a message to the other 
• Every time a node receives the message 

― Sends it back 
• Continue indefinitely 

― Till user stops 
Creating an empty project 

• Open the OMNeT++ IDE 
• Navigate to File | New | OMNeT++ Project 
• Enter a Name for the project  
• Next 

 
Select the Tictoc example file in the Examples folder 
You have created Tictoc example project 
 

 
Opening NED file 

• In newly createdproject, navigate to the simulations folder in the Project Explorer 



• Open  Tictoc.ned 
 
Understanding toctoc1.ned 
 

 
Opening Simple Module 

• Open project explorer 
• Open src folder of this project 
• Open  Txc.ned 

 
Understanding Txc.ned 
 

 
 
 
 
Opening Simple Module 

• Open project explorer 



• Open src folder of this project 
• Open  Txc.cc 

 
Understanding Txc.ned 
 

 
Understanding omnet.ini 
 

 
Compiling & Running on Tkenv 
 

 
 



 
 
 
Extending TicToc 
 

 
 

Refine graphics &  
 Tictoc2.ned 

Add debugging output 
 Txc2.cc 

 
 

 
 



Tictoc2.ned 
 

 
 



 

 
Tkenv output 
 
 
 

 
 
 



 
 

 
Extending TicToc 
 

 
 
 
Add State Variables 

• Add a counter as a class member to the module 
• Delete the message after 10 exchanges 
• Txc3.cc 

 
 
 



Txc3.cc 
 

 
 
 



Output: 
 

 
 

 
Adding parameters  

 
 
Adding parameters  
 

• Add input parameters to the simulations 
– Count = 10 now into a parameter that the user can define 

• tictoc4.ned 
• Txc4.cc 
• Omnet.ini 

 
Boolean parameter (decides if module should send out first message in its initialization code) 

• tictoc4.ned 
• Txc4.cc 
• Omnet.ini 

 



tictoc4.ned 
 
 

 
 

 



 

 
Using Inheritance 
 
 

 



Using Inheritance 
 What is different between tic and toc? 

― Parameter values 
― Display string 

 Inheritance allows to create a simple module 
― Then derive modules from ittictoc5.ned 

 
tictoc5.ned 
 

 



 
Modeling processing delay 
 

 
 
Modeling processing delay 

 So far, no processing delay in tictoc 
 We need timer in 
 Tictoc module to send itself “Event” message 
 tictoc6.ned 
 txc6.c 

 
Strategy  

 



tx6.cc  
 

 
 

 
Output: 
 

 



 
Random numbers and parameters 
 

 
Random numbers and parameters 

 Introduce random numbers in simulation 
– Randomly lose packet 
– Change delay from 1s to a random value 

 txc7.cc 
 tictoc7.ned Or omnetpp.ini 

 
 
txc7.cc 
 
 

 



 

 
Timeout, cancelling timers 
 

 



Timeout, cancelling timers 
 Getting closer to real world working protocols 
 Stop-and-wait protocol 
 txc8.cc 
 tictoc8.ned 
 omnetpp.ini 

 
 
Strategy 
 

 
 
 
txc8.cc 
 

 



 

  
Output 
 

 
 



Retransmitting same message 
 

 
 
Retransmitting same message) 

 So far we used “tictocMsg” 
 It was created afresh everytime 

– At tic 
– At toc 

 In reality, original packet needs to be retransmitted 
 Solution: Keep a copy with tic 
 txc9.cc 
 tictoc9.ned 
 omnetpp.ini 

 
 
 
 
Strategy 

 Create two new functions 
 Conditionally call them in tic and toc  

 
 

 
 
 



Txc9.cc 
 

 

 
generateNewMessage() 
 
 

 
 



sendCopyOf(cMessage *msg) 
 

 
 
 

More than 2 nodes 
 

 
 
 
More than 2 nodes  

 Create several tic modules 
 Connect them into a network 
 One of the nodes generates a message 
 Others toss it around in random directions 
 Until it arrives at a predetermined destination 
 tictoc10.ned 
 omnetpp.ini 
 txc10.cc 

 
 



Tictoc10.ned 
 

 

 



 
 
 

 
 

 
 



Output 
 

 
 

Channels & inner type definitions 
 

 
 
Channels & inner type definitions  

 With growing topology 
– We can improve connection section 

 tictoc11.ned 
 omnetpp.ini 
 txc11.cc 
 Connections with same delay parameter can be typified as channel 
 Such channel can then be replicated between gates 



Tictoc11.ned 
 

 
 

 

 
 
Using two-way connections 
 

 



Using two-way connections  
 So far, each node pair is connected with two connections 
 Two-way connection can reduce coding size 
 tictoc12.ned 
 txc12.cc 
 omnetpp.ini 
 We define two-way (inout) gates Instead of in and out gates 

 
Tictoc12.ned 
 

 
Defining our message class 
 

 



Defining our message class 
 Instead of hardcoding tic[3], we need flexibility 
 Draw out a random destination 
 Add Destination address 
 tictoc13.ned 
 txc13.cc 
 tictoc13.msg 
 omnetpp.ini 

 
 
Strategy : Avoid boilerplate code writing 
 

 
 
Strategy :Avoid boilerplate code writing 
 

\ 
 



Txc13.cc 
 
 
 

\ 
 
 
 



 
 
 
Output 
 

 



Displaying no. of packets sent/received 
 

 
Displaying no. of packets sent/received 

 No. of messages at each node 
 tictoc14.ned 
 txc14.cc 
 tictoc14.msg 
 omnetpp.ini 

 
 
Txc14.cc 
 
 

 
 



 

 
Object Inspector in Tkenv 
 

 
 



 
 
 
Adding statistics collection 
 

 
 
Adding statistics collection 

 When packet traverses multiple hops, it becomes important to collect network statistics 
– Average hop count 
– Max, min etc 

 tictoc15.ned 
 txc15.cc 
 tictoc15.msg 
 omnetpp.ini 

 



Strategy 
 

 
Txc15.cc 
 

 
 

 
 



 

 



Visualizing output scalars & vectorsVisualizing output scalars & vectors 
 

 OMNET++ allows to visualize outputs of scalar and vector files 
– Filtering 
– Processing 
– Displaying 

 
 
 

 
 
 

 
 



 
 
 
 
 
 

 
 
 
 
 
 



Analyzing Results 
 
What is Simulation Analysis? 

 Analyzing simulation results is lengthy and time consuming process 
 Result are recorded as scalar values, vector values and histograms 
 User can apply statistical methods 

– Extract the relevant information 
– Draw conclusions 

 
Analysis File (.anf) 

 A file that automates the steps to analyze the results 
– Loading result files 
– Filter them 
– Transform data 

 
 
Creating Analysis File 

 
 

 
 
Using the Analysis Editor 
 

 



 
 
 
 
 
 
 

 
 
 
 



\ 

 
 
 
 
 
Datasets 

 Describe a set of input data, the processing applied to them and the charts 
 Displayed as a tree of processing steps and charts 
 Nodes are used for 

― Adding and discarding data 
― Applying processing to vectors and scalars 
― Selecting the operands of the operations 
― Content of charts, and for creating charts 

 



Editing Datasets 
 
 

 
 
 

 
 
 
 



What is Compute Vectors? 
 Both Compute Vectors and Apply to Vectors nodes compute new vectors from other vectors 

 
 

 
 

What is Compute Scalars? 
 The Compute Scalars dataset node adds new scalars to the dataset whose values are 

computed from other statistics in the dataset 
 

 



Finally we are done! 
 

 
 
Computation Examples 1 
 
Bit rate 

 Assume several source modules in the network that generate CBR traffic 
 Parameterized with packet length (in bytes) and send interval (seconds) 
 Both parameters saved as scalars by each module (pkLen, sendInterval) 
 To use the bit rate for further computations or charts 

– Add a Compute Scalar node with the following content to create an additional bit 
rate scalar for each source module 

Value: pkLen*8/sendInterval 
Name: bitrate 
 
Throughput 

 Assume several sink modules record rcvdByteCount scalars, and simulation duration is 
saved globally as the duration scalar of the top-level module. 

 We are interested in the throughput at each sink module 
 We need to refer to the duration scalar by its qualified name (prefix it with the full name of 

its module) 
 rcvdByteCount can be left unqualified 

Value:8*rcvdByteCount/Network.duration 
Name: throughput 
 
Total Received Bytes 

 We are interested in the total number of bytes received in the network 
 We can use the sum() function 
 We store the result as a new scalar of the toplevel module, Network. 

   Value: sum(rcvdByteCount) 
   Name: totalRcvdBytes 
   Module: Network 



Bytes Received by Hosts 
 If several modules record scalars named rcvdByteCount 
 We are only interested in the ones recorded from network hosts 
 you can qualify the scalar name with a pattern 

 Value: sum(**.host*.**.rcvdByteCount) 
 Name: totalHostRcvdBytes 
 Module: Network 
 
Average of Peak Delay 

 If several modules record vectors named end-to-end delay 
 We are interested in average of the peak end-to-end delays experienced by each module 
 We can use the max() function on the vectors to get the peak 
 Then we need mean() to obtain their averages 

 Value: mean(max('end-to-end delay')) 
 Name: avgPeakDelay 
 Module: Network 
 
Computation Examples 2 
 
Packet loss per client-server pair 

 3 clients (cli0, cli1, cli2) and 3 servers (srv0, srv1, 
srv2) in the network 

 Each client sends datagrams to the corresponding server 
 Packet loss per client-server pair computed from the number of sent and received packets. 
 We use the i variable to match the corresponding clients and servers. 

 Value: Net.cli${i={0..2}}.pkSent -  
   Net.srv{i}.pkRcvd 
 Name: pkLoss 
 Module: Net.srv${i} 
 
Total No. of Transport Packets 

 When input scalars are recorded by different modules 
– We need the host variable to match TCP and UDP modules under the same host 

 Compute the total number of transport packets (the sum of the TCP and UDP packet 
counts) for each host 

 Value: ${host=**}.udp.pkCount + 
    ${host}.tcp.pkCount 
 Name:  transportPkCount 
 Module: ${host} 
 
Modules with largest RTT  

 A network has various modules recording ping round-trip delays (RTT) 
 We want to count the modules with large RTT values (where the average RTT is more than 

twice the global average in the network) 
 We need to do it in steps 

 Step 1: 
 Value: mean('rtt:vector') 
 Name: average 
 Step 2: 
 Value: average / mean(**.average) 
 Name: relativeAverage 



 Step 3: 
 Value: count(relativeAverage) 
 Grouping: value > 2.0 ? "Above" : "Normal" 
 Name: num${group} 
 Module: Net 
 
Simulation Models and INET 
What is Simulation Model? 

As we know that 
OMNET++ is not a simulation itself 

 It is a framework that allows other simulation frameworks 
– To be created 
– To be simulated 

 Simulation frameworks are simulation libraries 
– Implement protocols  
–  

Types of Simulation Model  
 Domain-specific functionality is provided by model frameworks 

– WSNs 
– Ad-hoc networks 
– Internet protocols, 
– Performance modeling 
– Photonic networks, etc.,  

 Developed as independent projects 
 Reusability of models in OMNeT++ is due to its modular architecture 
 Simulation models are easily integrated into OMNET++ 

 
Some Well-known Types 

 INET Framework 
 OverSim 
 Veins 
 INETMANET 
 MIXIM 
 Castalia 

 
 
INET  

 The INET Framework can be considered the standard protocol model library of OMNeT++ 
 Contains models for the Internet stack 

― TCP, UDP, IPv4, IPv6, OSPF, BGP, etc 
 Wired and wireless link layers 
 Ethernet, PPP,  802.11, etc) 
 Support for mobility 
 QoS support 
 DiffServ, RSVP 
 Several application models 
 Maintained by OMNeT++ team officially 

 
 
 
 



OverSim 
 Overlay and peer-to-peer network simulation framework 
 Contains several models for 
 Structured  

― Chord 
― Kademlia 
― Pastry 

 Unstructured 
― GIA 

 
 
 
Veins 

 Inter-Vehicular Communication (IVC) simulation framework 
 It is a road traffic microsimulation model 

 
 
 
INETMANET 

 Fork of INET framework 
 Simulation frAAamework for mobile ad-hoc networks 
 Written and maintained by Alfonso Ariza. 

 
 
 
MIXIM 

 Modeling framework created for 
― Mobile wireless 
― Fixed wireless 
― WSNs 
― BANs and VANs 
― Ad-hoc networks 

 Radiowave propagation 
 Interference estimation 
 Power consumption 
 Wireless MAC protocols 
 
 

 
CASTALIA 

 Simulation framework for networks of low-power embedded devices 
 Offers models for 

― Temporal path loss 
― Fine-grain interference  
― RSSI calculation 
― Physical process model 
― Node clock drift 
― MAC protocols  

 
 
 



Design Tour of INET 1 
 
In this module 
We shall take a guided 
Tour of INET to 

 Understand how ARP works in Ethernet environments 
 Walk through features of INET 
 Peek into various 

– Packets 
– Queues 
– Internal tables 

 
Why ARP scenario? 

 While ARP is not the most important protocol, it is very interesting 
 It relates to 

– Ethernet 
– IP 
– And other higher layer protocols 

 
Scenario 

 Client computer opens TCP session with server 
 Rest of operations (including ARP) follow 

– ARP has to learn the MAC address for the default router 
 
 
 

 
 
 
 
 
 



Usage Diagram for ARP 
 

 
 
 
On simulation start 
Ethernet autoconfiguration precedes ARP  
 

 
 

Entities at work 
 Various compound modules interact with each other 
 TCP host on Ethernet 
 Router 
 TCP server 
 How end-to-end transmission takes place? 

 
TCP Client 

 



Router 
 

 
 
 
 

 
TCP Server 
 

 
 
 
 
 
 



End-to-end transmission 
 

 
 
Ethernet Compound Module  

 In order to further understand how INET works, let us explore Ethernet (Compound 
Module) 

 Consists of 
― Arp 
― Encap 
― And Mac 

 
Ethernet Compound Module 
 

 



arpTest.client.eth[0].arp 
 

 
Inside ARP PaAcket 
 

 
ARP Packet Class (Generated by .msg file) 
 

 



Packet Queue (Contains IP Packet) 

 
ARP Cache Build-up 
 

 
 
 
 
Introduction to top-down approach to modelling and simulation 
 
Top-down approach to NeMS 

 Networks are complex to design 
 One-time design of simulation is cumbersome 
 Top-down: Phased roll-out of model-simulate cycle 

― Iterative 
 
 
 
 
 
 



Rolling-out of model at every layer to Design a Network 
 

 
 
Design goodness (QoE) is user-centric aspects 
 

 
 
Strategy 
 

 



Rules for Mathematical Reading                                                                                       
What is mathematical modeling?                             
 A Representation of an object, a system, or an idea in some form other than that of the entity itself.  

(Shannon) 
Quantification  

 The act of counting and measuring that maps human sense, observations and experiences 
into members of some set of numbers 

 Facts represented as quantitative facts are the basis of science 
 
Formalism  

 Mathematics creates models that have certain relationships 
 Statements of mathematics can be considered to be statements about the consequences of 

certain string manipulation rules 
 

Best practices to read mathematical expressions  
A) Understanding math is like understanding a foreign language 
B) Learn the formulas you already understand 
C) Always learn what the formula will give you and the conditions 
D) Keep a chart of the formulas you need to know 
E) Math is often written in different ways, but with the same meaning 

 
 
What is an equation?  

 A statement that the values of two mathematical expressions are equal  
 indicated by “=” sign 
 What is a formula then! 

 
Constituents of an equation?  

 Expressions consist of one or more of these arguments 
– Numerical constants 
– Symbolic names 
– Mathematical operators 
– Functions 
– Conditional expressions 

 
Easy math writing  

 2-3-4 rule 
 Consider splitting every 

– Sentence of more than 2 lines 
– Sentence with more than 3 verbs 
– Paragraph with more than 4 "long" sentences 

 Use mnemonics 
– s for speed 
– v for velocity 
– t for time 

 
 



Easy math writing 
 Organize into segments 

– An entity intended to be read comfortably from beginning to end! 
 Segments are standalone 

– Definite start 
– Definite end 

 Segments should be represented linearly 
 
QoE—Usability 
Everything starts with “You” 

 
 
What is usability?  

 Usability (Ub) is defined as the ease of use with which network users can access the network 
and services 

 Ergonomic and technological facilitation 
– Networks should make users’ jobs easier 

 Some design decisions have a negative affect on usability 
– Strict security 

 Some choices are user friendly 
– WiFi 
– DHCP 

 
Understanding usability  
Sanjay Kumar Gupta, “Usability Models Based on Network Artifacts for Rural Development” Int. J. 
Computer Technology & Applications,Vol 4 (3),508-513 

 Ub: Usability as ease of use 
 Ue: Use effort 
 Ub � 1/Ue 

 
Usability expressions 
 

 
Connotations 

 Usability (Ub) is expressed as a function of network devices 
 The top-down approach implies that the assessment of overall usability has to be based on 

the performance of  
– Hubs/switches 
– Routers/gateways 



 
QoE—Scalability 
Ability to grow 
 
What is scalability? 

 Scalability refers to the ability to grow (or add) 
 Factors to be added 

― Number of applications 
― Number of sites 
― Addressing at sites 
― No. of users 
― No. of servers 

 
Effects of growth 

 Efficiency decreases with increasing factors 
– But increases with increasing “other” factors 

 Execution time increases with increasing factors 
– But decreases with increasing “other” factors 

 
 
Understanding efficiency & speed-up  

 Execution time tends to vary with problem size 
― Must be normalized when comparing network performance at different traffic 

volumes 
 ERelative = T1 ¸ (No. of hosts ´ TNo of hosts) 
 SRelative = No. of hosts ´ E1 
 
Understanding execution time  
TimeExecution = TCompute + TComm + TIdle 
Tmsg = ts + twL  

 
 

Connotations 
 Scalability is expressed as a function of factors in the network 
 This criteria affects the design choices made for the network model 

 
 
 
 
 
 
 
 



QoE—Planning for Expansion 
Need to expand is ever increasing 
Why plan? 

 Expansion is unavoidable 
 Unplanned expansion causes performance degradation 

– Execution time 
– Efficiency 

 Planning is necessary 
– Preemption is key 
– Late planning is no planning 

 
Considerations for Planning  

 Nodes and locations 
– End hosts 
– Switches 
– Routers 

 Equipment scalability 
– No of ports 

 Naming system 
– Extensible tuple 

 (Node ID, Network ID) 
 Application-specific protocol choices 

– Email        
– File transfer, sharing & access 
–  DB access & updating          
– Web browsing 
–  Network game      
– Remote terminal 
–  Videoconferencing           
– Video on demand (VoD) 

 
 
 
QoE—Expanding Access to Data 
Scalability without continued access to data is futile 
 
Access to data 

 Social networking has emerged 
 Extranets need topology definitions & dedicated bandwidth allocation 

– Classic 80-20 rule ´ 
 Increased access 

– Data available to more departments 
– Increased utilization of network services 

 
 
Metcalfe's Law  

 Community value of a network grows as the square of the number of its users 
 Often cited as an explanation for the rapid growth of the Internet 

 
 
 
 



 
Expression for Metcalfe's Law  
 

n(n − 1)/2 or  O(n2) connections between “n” nodes 
 
 

 
 

Manifestation of Metcalfe's Law  
 

 Can be seen in network applications 
  

 
 
 
Connotations  

 Network model is more scalable than the number of nodes and servers in the topology 
 The total traffic load generated depends upon the user activity 

 



QoE—Constraints on Scalability 
The whole cannot be greater than the sum of its parts 
              (Apologies to Aristotle) 
 
Recall parts of model! 

 Nodes 
― Computing 
― Memory 

 Protocols 
― Operation 
― Message formats 

 Devices 
― Ports 
― Specifications 

 And more! 
 
Identify their upper bounds 

 Nodes 
― Nmax 

 Protocols 
― Operation: Omax 
― Message formats: Mmax 

 Devices 
― Ports: Pmax 
― Specifications: Smax 

 

Maximum scaled up network 
 Given by MinMax decision rule 

  Min(Nmax,Omax,Mmax,Smax) 
  The strength of the chain is determined by the weakest link 

 
Specific example 

 Constrained addressing 
― IPv4 
― Top-level exhaustion occurred on 31 Jan 2011 
― 24 Sep 2015 for North America 

  Unconstrained addressing (for now!) 
― IPv6 

 With everything as IoT, 2128 is the constraint 
 
 
QoE—Availability 
The degree to which a system, subsystem or equipment is in a specified operable and committable 
state 
 
Everything may fail, not if but when! 

 Networks Nodes Links 
 Typical failure of components represented by the famous 

 
 
 



 
 
Network Availability 

 Percent uptime per year, month, week, day, or hour to total time in that period 
– For example: 

• 24/7 operation 
 Network is up for 165 hours in the 168-hour week 

– Availability is 98.21% 
Application perspective 

 Applications may require different levels 
– Real time 

• Video/Audio 
– Commerce 

• Non-repudiable transactions 
– Non-real time 

• Email 
Availability vs reliability 

 Reliability is the ability of a system to complete its function 
– accuracy 
– error rates 
– Stability 

 Even if a system is available does not mean its reliable 
Availability vs capacity 

 A system that runs out of capacity becomes unavailable 
– ATM connection admission control 
– Regulates no. of cells into network 

 If capacity & QoS for connection unavailable 
– cells dropped 

Availability vs redundancy 
 Redundancy is not a goal 
 It is provided to achieve a level of availability 

– Only a means! 
Availability vs resiliency 

 How much stress can be taken by network? 
– Availability difficult to maintain 
– No. of failures that make a system unavailable 

 How soon can a network rebound? 
– Availability difficult to achieve 

 



QoE—Disaster Recovery 
Amat Victoria Curam (Latin) 
Victory Loves Preparation 
 
Benjamin B. M. Shao, “Allocating Redundancy to Critical Information Technology Functions for 
Disaster Recovery,” Proc. 10Th Americas Conference on Information Systems, Aug. 2004 
 
The question 
How to allocate redundancy to IT functions such that the overall survivability of these IT functions 
against disasters is maximized and the cost remains under budget. 
 
Redundancy 

 Redundancy in preparation for disasters provides disaster preparation 
– Proactive prevention  
– Reactive recovery  
– Backup facilities 

 
Redundancy Allocation Scenario 
 

 
 
 

 
Redundancy Allocation Model  

 IT function can be implemented by a number of IT assets 
– Computing hardware 
– Communication links 
– IT personnel, and 

 other infrastructure 
 
 
 
 
 
 



Redundancy Allocation Model  
 

 
 
 

 
 
 

 
 
 



 
Redundancy Allocation Model  

 m fails against d only when all of its selected solutions fail at same time 
– As long as one of the selected solutions survives, m would still be operational 

 
QoE—Specifying Requirements 
Measurable is achievable 
 
Availability in %age per annum 

 Uptime of 99.70% 
– 30 mins downtime  

 Uptime of 99.95% 
– 5 mins downtime 

 Map onto totally deviant requirements 
 
 
Availability in calendar year 

 Downtime on weekdays 
– vs weekends 

 Project deadlines 
 
Availability in spurts 

 Staggered vs onetime  
 99.70% uptime 

― 30 minutes per year 
― 10.70 sec per hour 

 Acceptable for some users not to others 
 Allowed for few applications 



QoE—Five Nines Availability 
The devil is in the details of availability 
 
5 9s as best-case availability  

 Some enterprises may want 99.999% 
– 5 minutes downtime per year 

 Sometime or all the time? 
– A million $ worth question for managers 

 Repair time inclusive or exclusive 
– In service upgrades (hot-swaps) possible? 

 Hardware manufacturers provide 5 9s 
 However sum is not equal to parts 

– Carrier and power outages 
– faulty software in routers & switches 

 Unexpected and sudden increase in bandwidth or server usage 
 Configuration problems, human errors (90% of all!) 
 Security breaches, and software glitches 

 
Shifting Impact of 9s on time 
 

 
 
99.999% Availability might require triple redundancy 
 

 
One being active, one in hot standby ready to be used immediately, one in standby or maintenance 



QoE—Cost of downtime 
40 percent of companies that 
shut down for three days failed within 36 months (Contingency Planning and Management 
magazine) 
 

 
 

Source: Top Business Continuity Priorities for 2004.©EnvoyWorldWide - February, 2004 
 
 

 

 
 

 
 

Source: New England Disaster Recovery Information X-Change (NEDRIX) 
 

 



Step-wise approach to measure downtime cost 
1. Identify Business Continuity Components 
2. Define What You Protect 
3. Prioritize Business Functions 
4. Classify Outage Types, 
5. Calculate cost 

 
Identify Business Continuity Components 

 People 
 Property 
 Systems 
 Data 

 
Define What You're Protecting 

 Define core competencies 
― product, service, process, or methodology 

Prioritize Business Functions 
 Business functions necessary to sustain that core competency 

― And associated IT infrastructure 
 80% of available resources restore 20 % systems, applications, and data 

 
Outage Types, Frequencies, & Duration 

 Branch Outage 
 Regional outage 
 Data center outage 
 National outage 

 
Calculate cost 
Frequency x Duration x Hourly Cost = Lost Profits 
 

 
Example 

 If there were 90 branch outages in an average year 
― Each lasting an average of one-and-a-half hours 
― Costing $300/hour 90 outages x 1.5 hours x $300/hour = $ 40,500 

 Cost of branch outages for a year =$40,500 
 
 
 
 
 



QoE—MTBF AND MTTR 
Averaging out the availability 
 
Availability as MTBF  

 Mean time bw failure (MTBF) & mean time to repair (MTTR) 
 Component vs service 

– Mean time bw service outage (MTBSO) 
– Mean time to recover from service outage (MTTSO) 

 Typical MTTF value is once per 4000 hrs or 166.7 days 
 Typical acceptable MTTR value is one hour 

 Availability = MTBF/(MTBF + MTTR) 
 
                       4,000/4,001 = 99.98% availability 
 

 MTBF with MTTR help to assess frequency and length of service outage 
– Mean value must be supported with variance 

 
 The difference between MTTF and MTBF is the assumption of the former that the system 

shall be repaired while in the later the system is replace 
 
 

 
 

 
QoE—Network Performance 
Composite metric that is end-to-end 
 
Definition 
 An overall working 
 Many different ways to measure the performance of a network 

― Each network is different in nature and design 
 Modeled 
 Simulated 
 Measured 

 



 
 
 
 
 
QoE—Optimum Network Utilization 
Optimum is “As good as it gets” 
 
Definition of optimum 

 Selection of a best element (with regard to some criteria) from some set of available 
alternatives 

 
Optimum network utilization  

 How much % of bandwidth capacity in a specific time period? 
 Time varying phenomenon   

– Instantaneous, averaged, weighted) 
  Both goal & constraint  
 Typical value is 70$%  

– Exceeding this results in performance degradation 
 WAN links utilization is more crucial than LAN 

– Pay per packet 
 Compression, caching and concatenation used to reduce WAN utilization 
 LANs are over-budgeted 

– Fast Ethernet) 
 Full-duplex vs. half duplex switches 
 User activity levels 
 LANs suffer from exceeding utilization in switch-to-switch 

 
 



QoE—Throughput 
Throughput = Goodput + Badput 
 
Definition of throughput 
 Quantity of error free data transmitted/ sec 

– Erroneous transmissions futile 
  Ideally, should be the same as capacity 

 

 
 
Deviation indicates the limitations of media type, device and network 

 

 
 
QoE—Throughput of devices 
Simulation of devices and specifications is vendor specific 
 
Types of device throughputs 

 Inter-networking devices give throughput as in 
– TCP/IP: Packets per second 
– ATM: Cells per second 

 Sizes vary from 53, 64 to 1518 Bytes 
 
Example—CISCO devices 

 Traffic generators-device-traffic checkers in tandem measure throughput 
– Smaller packets give better pps 

 Cisco claims of 400 million pps for the Cisco Catalyst 6500 switch 
CISCO claims throughput; which in actual is the capacity 
 

 



QoE—Application Layer Throughput 
Application layer uses lower layers unfairly 
 
Definition 

 Application layer throughput = goodput + badput 
 Goodput vs badput 
 Badput contributed by retxns, header etc 

– Fraction of packets that collided/lost 
 Fc = C/N 
 Fc = L/N 

 
Factors affecting goodput 

 End-to-end error rates 
 Protocol functions (handshaking, windows, & acks) 
 Protocol parameters (frame size, retx timers) 
 pps rate of networking devices 
 Lost packets at networking devices 
 Workstation & server performance factors: 

– Disk-access speed 
– Disk-caching size 
– Device driver performance 

 Computer bus performance (capacity/arbitration) 
 Processor (CPU) performance 
 Memory performance (access time for real and virtual memory) 
 Operating system inefficiencies 
 Application inefficiencies or bugs 

 
An, Cheolhong, and Truong Q. Nguyen. "Error Resilient Video Coding using Cross-Layer 
Optimization Approach." IEEE Transactions on Multimedia 10 (2008): 1406-1418. 
 

 
 



Connotations 
 Application layer throughput provides insight into “useful' transmissions 

– It relates resource allocation down to physical layer throughput 
 
QoE—Accuracy 
Being accurate is not being precise 
 

 
 

Definition 
 Data sent and received should be the same 
 Also referred as the number of error-free frames transmitted relative to the total number 

of frames transmitted 
 
Factors affecting accuracy  

 Packet reordering at routers 
 Power surges 

– Lightning impulse of 1  s on 10 Mbps link 
 Impedance mismatch problems 
 Poor physical connections 
 Failing devices 
 Noise caused by electrical machinery 
 WAN links give BER and SNR (10-5~10-11) 
 LANs specify erroneous frames per 106 Bytes 
 On shared Ethernet, collisions main cause of accuracy degradation 
 First 64 Bytes collision (legal or runt frames) 
 Typical acceptable value is .1% frames 
 Late collisions are illegal 

 
• Nahum, Erich M. "Validating an architectural simulator." Department of Computer Science, 

University of Massachusetts at Amherst. 1996. 
 

Accuracy = [(Real value – Error) / Real value] * 100 
 



The frequency of events plays a key role in the overall accuracy 
– Ei is the event i in the system 
– freq(Ei) is the frequency of event i  
– real(Ei) is the desirable (real) cost of event i  
– sim(Ei) is the  simulated (obtained) cost of event i  

 

 
 
 
QoE—Efficiency 
Boiling water analogy 
 
Definition 

 Application layer throughput = goodput + badput 
 Goodput vs badput 
 Badput contributed by retxns, header etc 

– Fraction of packets that collided/lost 
• Fc = C/N 
• Fc = L/N 

 
Factors affecting efficiency  

 Access protocols 
– high number of users showing activity 
– Ethernet not efficient at high collision rates 

 Frame size 
– Using large frame is useful for single user on WAN links 

 Serialization delay on WAN links results in unfair treatment 
– for real-time shorter frames enquired in router  

 

 
 
Kleinrock, Leonard. "Creating a mathematical theory of computer networks." Operations Research 
50.1 (2002): 125-131. 
 



 
 

 
If you scale capacity more slowly than throughput while holding the average response time 
constant, then the channel efficiency (channel utilization) will increase  
 
Average Efficiency 
Latora, Vito, and Massimo Marchiori. "Efficient behavior of small-world networks." Physical 
review letters 87.19 (2001): 198701. 
 

 
 

 E(G) is the average efficiency of a network G 
 n denotes the total nodes in a network 
 d(i,j) denotes the shortest path between a node i and a neighboring node j 

 
 

QoE—Delay and Jitter 
Applications might forgive delay but not jitter 
Delay 

 Voice and video applications (especially interactive) demand minimum delay 
 Other applications such as Telnet remote echo need timed performance 

 
 
 
 
 
 



Sources of packet delay 
  

 
Delay variation (jitter) 

 The amount of time average delay varies 
 Voice, video, and audio are intolerant of delay variation 

 
 
Source of jitter 
 

 
 
 

QoE 
It is the small factors that matter the most 
 
Causes of Delay  

 Propagation 
– Media type 
– Length 

 Transmission (serialization) 
– 1024 Bytes on T1 

 Switching delay 
– upto 5-20 microsec for 64 Bytes frame 

 



 Router delay  
– Look-up, router architecture, configuration 
– Software features that optimize the forwarding of packets 

 NAT, IPSEC, QoS, ACL Causes of Delay (3 of 3) 
 Queuing delay 

– Dependent upon utilization 

 Formula 
         Queue depth = Utilization/(1 – Utilization) 

 
Queue Depth vs. Utilization 
 

 
 
 

Implications of queuing delay 
 

 
 

 
 
 
 
 



QoE—Delay variation 
All animals are equal, but some animals are more equal than others (George Orwell) 
 
 
Delay variation  

 Amount of time average delay varies 
 Voice, video, and audio are intolerant of delay variation 
 Tradeoffs needed for efficiency for high-volume applications versus lowConcept of jitter 

buffer to smoothen out the jitter 
 Variations on the input side are smaller than the buffer 
 Acceptable variation is 1-2% of the delay 

 
Jitter types  

 Jitter is quantified in two ways 
 Delay jitter 

― bounds maximum difference in total delay of different packets 
― Assumes source is perfectly periodic 

 Used for Interactive communication 
– voice and video teleconferencing 

 Helps to translate to  maximum buffer size needed at the destination Second measure is rate 
jitter 

 Bounds difference in packet delivery rates at various times 
 Measures difference between minimal and maximal inter-arrival times (reciprocal of rate) 
 Useful measure for many real time applications 
 Video broadcast over the net 
 Slight deviation of rate translates to only a small deterioration in the perceived quality 

 
Jitter Analysis Points 
 
Kay, Rony. "Pragmatic network latency engineering fundamental facts and analysis." cPacket 
Networks, White Paper (2009): 1-31. 
 
 

  
 
 
 



Measurement of jitter 
 

 
 
 
QoE—Response Time 
Response time is relative phenomenon 
 
Definition 

 The amount of time between a request for some network service and a response to the 
request 

 
Measurement Points Locations 
Tim R Norton. "End-To-End Response Time: Where to Measure?" Computer Measurement Group 
Conference Proceedings, 1999. 
 
 
 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 



Measurement of Response Time 
 
[1] Reinder J., Bril., System Architecture and Networking. TU/e Informatica 
[2] Sjodin, Mikael, and Hans Hansson. "Improved response-time analysis calculations." Real-Time 
Systems Symposium, 1998. Proceedings., The 19th IEEE. IEEE, 1998. 
 
Measurement of Response Time 
 

                     
 
 
 
 
Measurement of Response Time 
Ceiling function represents maximum number of pre-emptions by higher priority processes 
 

 
 
 

 
 
 
 
 
 
 



 
QoE—Security 
Threat = Capability + Intention 
 
Definition 

 Protection of information systems from threat 
– Hardware 
– Software 
– Information on them  

 Avoidance from  
– Disruption 
– Misdirection of the services they provide 

Implementation 
 Includes controlling physical access to the hardware 
 Protecting against harm via 

– Network access 
– Data 
– Code injection 

 
Trusted Computing Base 

 Rainbow Series(orange book) 
 Set of all hardware, firmware, and/or software components 
 Critical to its security 
 Bugs occurring inside jeopardize security of entire system 

 
Bell-Lapadula Model 

 Users as Subjects 
 Predicates 

– Devices and data as Objects 
 Process algebra provides the action (verb) of subject over predicates 

 
Bell-Lapadula Model 

 Users as Subjects 
 Predicates 

– Devices and data as Objects 
 Process algebra provides the action (verb) of subject over predicates 

 
QoE—Reconnaissance Attacks 
Prevention is better than cure 
Definition 

  Reconnaissance is a type of computer attack 
 Intruder engages with the targeted system 

– Gathers information about vulnerabilities 
 
Types 

 Active reconnaissance  
 Port scanning 
 Passive reconnaissance 
 Sniffing 
 War driving 
 War dialing 



Targeted Threat Index 
 

Hardy, Seth, et al. "Targeted threat index: Characterizing and quantifying politically-motivated 
targeted malware." Proceedings of the 23rd USENIX Security Symposium. 2014. 
 
Targeted Threat Index 
 Vulnerability of system 
 Depends upon 

– Target feature set 
– Attacker methods 
– Attacker aggressiveness 

                  TTI = Method * Implementation 
 
QoE—Security Requirements 
 
Definition 
 Enlist all the activities, actions, hardware/software 
 Confidentiality 
 Integrity 
 Authorization 
 Authenticity 
 Availability 
 Encryption 
 
Assessing Security Levels 
Burchett, Ian. "Quantifying Computer Network Security." (2011). 
 
 

 
 
 
 



Common Vulnerability Scoring System 
 Provides a repeatable quantitative score for computer security vulnerabilities 
 
Vulnerability Compositing Method per Client 
 

 
 
QoE—Manageability 
Definition 
 The level of human effort required to keep that system operating at a satisfactory level 

– Deployment 
– Configuration 
– Upgrading 
– Tuning 
– Backup 
– Failure recovery 

 
Assessing Manageability 
Candea, George. "Toward Quantifying System Manageability." UseNix HotDep. 2008. 
 
Manageability Metric 

\ 
 
The notion of efficiency of management operations, which is approximated by the time Timei the 
system takes to complete Taski 
Approximate complexity of a management task by the number of discrete, atomic steps (Stepsi) 
required to complete Taski 
 
 



Commentary  
 

 Manageability is reduced proportionally to how long the management tasks take 
 And to how many atomic steps are involved in each such task 
 The fewer steps there are, the lower the exposed complexity of the system 
 The faster the management tasks can be completed, the lower the likelihood of trouble 
 Less management a system requires (i.e., the longer TotalTimeeval for the same Ntotal), the 

easier it is to manage 
 Equivalently, the less the system needs to be managed, the better 
 

QoE—DoS Attack 
Definition 

 An attempt to make a machine or network resource unavailable to its intended users,  
 Temporarily 
 Indefinitely 

 
 

Implementation 
 Transmit a large number of packets 

– TCP Syn attack 
– Ping attack 

 Server crashing attack 
– Large computational load 

 
A Simple Attack Analysis 
He, Changhua. Analysis of security protocols for wireless networks. PhD Diss. Stanford University, 
2005. 
 
A Simple Attack Analysis 

 Attack type: TCP SYN flooding DoS attacks 
– n packets are used for attack 
 

 Counter: Random drop queue 'Q' 
– Q = queue depth 

 
Attack success probability 

 P = 1 − (1 − 1/Q)n 
Attack failure probability 

 1-P 
 
A Simple Attack Analysis 
 

 



Making Network Design Tradeoffs 
Definition 

 Make balance between desirable & incompatible features 
 A compromise 
 Often conflicting technical goals 
 Make tradeoff a necessity 

– Availability vs affordability 
– Usability vs security 

 
A Simple Communication tradeoff 
Compressing of an image 

 Reduces transmission time/costs 
 At the expense of CPU time 
 Tradeoff between computation and communication 

 
Tradeoff at Network Level 

 
 

 Throughput is at conflict with fairness 
 Tradeoff can be implemented through weighted scheduling 

 
A child with Rs. 100 in a convenience store! 
Handle it as a knapsack problem! 
 

          
 



A child with Rs. 100 in a convenience store! 
 

  
 
 
Problem Set 1 
 

 
 
 
 
 
Effect of Topology Factors 
1. What is the total data rate of the network? 
2. What is the application that is generating the maximum load per user in Administration 
department? 
3. What is the application that is generating the minimum load per user in Math and Science 
department? 
 
 
Effect of Routing Protocols 
1. If RIP sends a routing packet every 30 seconds and each packet contains 25 routes (Each route is 
20B), what is the bit rate? 
 



Problem Set 2 
 

 
 
 
Effects of Deployment/Protocol Behaviors 
1. Where is the data center? 
2. What is the data rate available for users of Eugene? 
3. What is the maximum Internet speed available to the users? 
4. Label the router that needs to implement firewall. 
5. If a user in Medford sends out a broadcast 255.255.255.255, what is the impact? 
 
 
Queuing Behaviors 
1. A CISCO switch has 20 users (clients and servers), each offering packets at a rate of 200 packets 
per second. If the average length of the packets is 64 Bytes, and the transmission rate of the switch 
is 10 Mbps measure the load of all the users and the LAN utilization. Then measure the queue 
depth 
 
 
Understanding Network Design 
1. Label the bastion host in the network. 
2. Label the fastest end-to-end interoffice segment. 
3. Label the slowest end-to-end interoffice segment. 
4. How many total LAN segments are there? 
5. Label at least one network where duplex auto-negotiation might help. 
6. Label at least one segment where BERT can be used to measure BER. 
 
 
 



Simulate FTP Scenario 
A Real World Scenario 
 
 

 
 
 
Factors affecting goodput  

 End-to-end error rates 
 Protocol functions (handshaking, windows, & acks) 
 Protocol parameters (frame size, retx timers) 
 pps rate of networking devices 
 Lost packets at networking devices Workstation & server performance factors: 
 Disk-access speed 
 Disk-caching size 
 Device driver performance 
 Computer bus performance (capacity/arbitration) 
 Processor (CPU) performance 
 Memory performance (access time for real and virtual memory) 
 Operating system inefficiencies 
 Application inefficiencies or bugs 

 
 
Implementation in INET 
Source: https://omnetpp.org/doc/inet/api-current/neddoc/index.html 
examples/inet/bulktransfer/BulkTransfer.ned 
 



 
 
Usage diagram 

 
Source: src/applications/tcpapp/TCPBasicClientApp.ned 
numRequestsPerSession = exponential(3) 
   requestLength = truncnormal(20,5) 
   replyLength = exponential(1000000) 
 
What to model? 
1. Total time it takes to complete file transfer 
2. Total goodput vs badput 
3. Network utilization  
4. Delay variation  
5. Usability 
6. Scalability 
7. Availability 
 
Parameters 

 

 
 
 



What to model? 
 

 
 
Simulating DoS Attack 
 
Igor Kotenko & Alexander Ulanov , “Simulation of Internet DDoS Attacks and Defense ,” ISC 
2006, LNCS 4176, pp. 327–342, 2006. 
 
Kaur, Rupinderjit, Amrit Lal Sangal, and Kush Kumar. "Modeling and simulation of DDoS attack 
using Omnet++." Signal Processing and Integrated Networks (SPIN), 2014 International 
Conference on. IEEE, 2014. 
 
What to model? 
 

 
 
Configuring Ping of Death attack 
 

 



cSimpleModule::initialize(); 
packetSize = par("packetSize"); 
sendIntervalPar = &par("sendInterval"); 
hopLimit = par("hopLimit"); 
count = par("count"); 
startTime = par("startTime"); 
stopTime = par("stopTime"); 
 
Summarizing top-down approach 
Our Strategy 

 
Application layer Roll-out for M&S 

 
Simulate RTP with Packet Loss 
Family of RTP 

 
 



RTP 
• Real-time Transport Protocol (RTP) is a network protocol 
• Delivers audio/video over IP networks 
• Streaming media 
• Telephony 
• Video teleconference 
• Television service 
• Push-to-talk over web 

 
Delay/Jitter Analysis Points 

 
 

Inet for Simulating RTP 
(examples/rtp/unicast1/unicast1.ned) 
 

 
 

src/nodes/rtp/RTPHost.ned 
 

 
 



Usage Diagram and Statistics 
 

 
 
Client Server Architectures 
An architecture for data exchange 

 
Definition 

 One known server 
 Always-on 
 Permanent IP address 
 Clients communicate with server 
 Intermittently connected 

 
Performance 

 
 Distribution time for the client-server architecture denoted by Dcs 
 Size of the file to be distributed (in bits) by F 
 Number of peers that want to obtain a copy of the file is N 
 dmin denotes the download rate of the peer with the lowest download rate 
 Server upload rate is us 



 
Web Server Modeling 
Message Flow 

 
 
Operation 

 Handles multiple HTTP requests 
 Accepts and parses the HTTP request 
 Gets the requested file from the server's file system 
 Creates and sends an HTTP response message consisting of the requested file 

 
Characterizing web server 

 Buffer size per client 
 Number of clients 
 File size that it handles 
 Processing time 
 Time out interval 

 
HTTP Modeling 
Time line operation 
 
 

 
 



Variants 
 HTTP is based on sequenced messages 
 Underlying TCP handshaking determines the overall performance 

– Persistent 
– Non-persistent 
– Pipelined 
– Caching 

 
Non-Persistent Connections 
TCP handshaking required for every object 
 

 
 

Modeling Non-persistence 
 It requires 2 RTTs per object 
 Total time for N objects 

N*2RTT + N*Transmit time 
 Consequent effect on simulated time is exacerbated in a multi-hop real world network 

 
 
Persistent Connections 
TCP handshaking required once 
 

 



Modeling Persistence 
 It requires 1 RTTs per object 
 Total time for N objects 

(N+1)*RTT + N*Transmit time 
 Consequent effect on simulated time is noticed in a multi-hop real world network 

 
Cache Response Time 
Caching operation 

 User sets browser: Web accesses via  cache 
 Browser sends all HTTP requests to  cache 

― Object in cache: cache returns object  
― Else cache requests and returns object from origin server 

 
Clients requesting objects through cache 
 
 

 
 
Advantages of caching 

 Reduces response time for client request 
 Reduce traffic on an institution’s access link 

 
Simulating Scenarios with and without cache 
 

 
 
 



 
Factors affecting caching 

 Average request rate from institution’s browsers to servers 
 Round trip delay from institutional router to server 
 Correlation between requests 
 Average object size 

 
Example  

 Average object size = 100,000 bits 
 Avg. request rate from institution’s browsers to origin servers = 15/sec 
 Delay from institutional router to any origin server and back to router  = 2 sec Utilization on 

LAN = 15% 
 Utilization on access link = 100% 
 Total delay   = Internet delay + access delay + LAN delay 

= 2 sec + minutes + milliseconds 
 If hit rate is .4 
 40% satisfied locally 
 60% requests satisfied by server 
 Utilization of access link reduced to 60% (say 10 ms) 
 Avg delay = Internet + access + LAN 

=  .6 * (2.01) s + ms < 1.4 secs 
 

 
 
FTP Efficiency 
FTP operation 

 Client contacts FTP server at port 21 
 Client obtains authorization 
 Browses remote directory 
 Server receives file transfer command 
 Server opens TCP data connection to client 
 After transfer connection closed 

 
Control Signaling of FTP 

                  
 



Computational Efficiency of FTP 
(COURTESY: ALEBRA TECHNOLOGIES INC.) 
 

 
 
TCPU = Total CPU seconds recorded during the period of file transfer 
ICPU = Measured CPU seconds when machine is idle for the equivalent period 
MIPS = Machine performance rating in Millions of Instructions per second 
TRATE = Transfer rate in megabytes per second 
 
SMTP Scalability 
Entities of SMTP Architecture 

 
Recall scalability 

 Ability to grow 
 Scaling may include 

― Number of user sites 
― Inter-site topology 
― No. of user agents 
― User mailbox size 
― No. of mail servers 
― Outgoing queue size  

Efficiency & speed-up for SMTP 
Mail delivery time tends to vary with scaling factors 

• Must be normalized when comparing SMTP performance at different traffic volumes 
― On single server 
― Servers confederation 

ERelative = T1 ¸ (No. of hosts ´ TNo of hosts) 
SRelative = No. of hosts ´ E1 



DNS Load Distribution & Loss 
Typifying DNS operation 
 

 
 
Casalicchio, E., Caselli, M., Coletta, A., & Fovino, I. N. Aggregation of DNS health indicators: 
issues, expectations and results 
 

 
 
Health metrics 
Incoming Bandwidth Consumption (IBC) 

 Ratio between total amount of incoming data during a session over the duration of the 
session 

 Range: [0, IBC max] 
 measured in Mbit/s 

 



Health metrics 
Incoming Traffic Variation (ITV) 

 For each session i, 
(IBCi − IBCi−1)/lengthi  

 IBCi is incoming bandwidth consumption in ith session 
 lengthi is duration of that session 

 

 
 

Traffic Tolerance (TT) 
 Measures the Round Trip Time (RTT) of a IP packet flowing between end-user node and 

ISP’s recursive resolver in seconds 
 

 
 

DNS Requests per Seconds (DNSR) 
 It gives the total number of DNS queries in the session 

 

 
 

Rate of Repeated Queries (RRQ) 
 In a single session a name is resolved only once due to caching 
 The metric returns no. of repeated DNS queries in a session for same name if the query is 

lost 
– Or not cached 

 

 
 
 
 
Peer to Peer Scalability 
Operation 

 No always-on server 
 Arbitrary end systems directly communicate 
 peers are intermittently connected 
 Change IP addresses 

 
 



File Distribution Problem 
 

 
Performance 
 

 
 

 Distribution time for the P2P architecture denoted by DP2P 
 Size of the file to be distributed (in bits) by F 
 Number of peers that want to obtain a copy of the file is N 
 dmin denotes the download rate of the peer with the lowest download rate 
 Upload capacity of the system as a whole = the upload rate of the server plus the upload 

rates of each of the individual peers, that is, utotal = us + u1 + ... + uN 
 Server upload rate is us 

 
Torrents Efficiency 
Basic Torrent Operation 
 

 



Factors affecting efficiency 
 Heterogeneous upload capacity 
 Diversities of neighbor selecting mechanisms 
 Geographical distribution of peers 
 Downloading rates of LocalBT clients 
 Peer selection policy 

 
Performance 

 
 

Reliability of Circular DHT 
Operation of Circular DHT 
 

 
 

 
REDUNDANCY HANDLES FAILURES 
 

 



Cost of Reliability 
 

 
 
l leaf-set keepalive messages every T seconds 
2-messages for probe and response Routing table probes every Trt 
Summation computes expected number of routing table entries (128/b rows and 2b columns) 

 Last expression is a binomial distribution 
 
Problem Set 1 
Network Latencies 
 
Consider an institutional network connected to  the Internet. Suppose that the average object size is 
850,000 bits and that the  average request rate from the institution’s browsers to the origin servers is 
16 requests per second. Also suppose that the amount of time it takes from when the router on the 
Internet side of the access link forwards an HTTP request until it receives the response is three 
seconds on average. 
 
Model the total average response time as the sum of the average access delay (that is, the delay 
from Internet router to institution router) and the average Internet delay. For the average access 
delay, use Δ/(1 – Δb), where Δ is the average time required to send an object over the access link 
and b is the arrival rate of objects to the access link. 
 
Now suppose a cache is installed in the institutional LAN. Suppose the miss rate is 0.4. Find the 
total response time. 
 
HTTP Performance 
Suppose that an HTML file on a web server references eight (8) very small objects. Neglecting 
transmission times, how much time it takes when non-persistent HTTP connection is used and the 
browser is configured for five (5) parallel connections? 
 
A. 18RTT                               B. 6RTT  
C. 3RTT                                 D. None of these 
 
Problem Set 2 
P2P Protocols 
 
Suppose that peer 3 learns that peer 5 has left. How does peer 3 update its successor state 
information? 
A. It asks peer 4                     B. It asks peer 8      
C. It asks peer 2                     D. None  
 
 
User Activity Monitoring 
For a 1 Mbps link, if each user generating 200 kbps is active for 20% of the time, what is the 
probability that out of a total of 100 users, more than 5 users be active? 
 
 



 
Simulate HTTP Persistence 
 

 
HTTP Evolution 

 RFC 793 does not support persistence 
– HTTP1.0 

 Additional mechanism needed 
– Use keep-alive 

 HTTP 1.1 is persistent by default 
 
HTTP Support in OMNET++ 
Module Interface ITCPApp  
 

 
 

 Template for TCP applications (Inheritance) 
 It shows what gates a TCP app needs 
 to be able to be used in StandardHost etc 

 
HTTP Browser in OMNET++ 
src/applications/httptools/HttpBrowser.ned 
Default support is HTTP 1.1 
simple HttpBrowser like ITCPApp 
{    parameters: 
        int httpProtocol = default(11); }  
Supported Modes 
 

 Random request mode 
 Browser uses statistical distributions generate requests to random web servers 



 Scripted mode 
 Browsing behavior determined by a list of predefined web sites to visit at specific times 

 
Simulate DNS Query Response 
Basic Operation 
 

 
 
DNS Support in OMNET++ 

 Extensions provide classes and functions to simulate DNS and MDNS traffic 
 Implement RFC 1035 

 
Supported DNS Operations 

 Name servers with recursive resolving capabilities 
 Authoritative servers with DNS zone configuration using master files 
 Caching servers without zones 
 Only recursively resolving 
 DNS Cache base that can be extended 
 Caches based on different policies possible 
 DNS client that can query a DNS server 

 
Simulate TCP Threading 
Threaded Server 
 

 



 

 

 
 
INET Support for TCP 
 

 RFC 793 - Transmission Control Protocol 
 RFC 896 - Congestion Control in IP/TCP Internetworks 
 RFC 1122 - Requirements for Internet Hosts -- Communication Layers 
 RFC 1323 - TCP Extensions for High Performance 
 RFC 2018 - TCP Selective Acknowledgment Options 
 RFC 2581 - TCP Congestion Control 
 RFC 2883 - An Extension to the Selective Acknowledgement (SACK) Option for TCP 

 
Features 

• RFC 793 TCP states and state transitions 
• Connection setup and teardown as in RFC 793 
• Segment processing 
• Receive buffer to cache above-sequence data 
• Data not yet forwarded 

 
 
 



Simulate HTTP Handshaking 
HTTP Requests 
 
HTTP/1.0: 

 GET 
 POST 
 HEAD 
 asks server to leave requested object out 

of response 
 

 
HTTP/1.1: 

 GET, POST, HEAD 
 PUT 
 uploads file in entity body to path 

specified in URL field 
 DELETE 
 deletes file specified in the URL field 

 
 
HTTP Response 
200 OK 
request succeeded, requested object later in this msg 
301 Moved Permanently 
requested object moved, new location specified later in this msg (Location:) 
400 Bad Request 
request msg not understood by server 
404 Not Found 
requested document not found on this server 
505 HTTP Version Not Supported 
 
HttpBrowser Class Reference 
(Inheritance Diagram) 
 

 
 
 
 
Intro & Transport Services 
Introduction 

 Transport layer is the big brother 
 Manages end to end delivery of data 
 Modeling of transport layer is pivotal to the overall performance 

 
 
 



Transport Services 
 Multiplexing and demultiplexing 
 Reliable, in-order delivery (TCP) 
 Congestion control  
 Flow control 
 Connection setup 
 Unreliable, unordered delivery: UDP 
 “best-effort” IP 
 Services not available 
 Delay guarantees 
 Bandwidth guarantees 

 
Modeling Approach 
 

 
 
 
Multiplexing & Demultiplexing 
Basics 

 
 
 
 
 
 



 
 
Capability of Port # 
 

 
Cost of Multiplexing 

 
 
Multiplexing Communication Link 
Typical Multiplexing Techniques 

 



Capacity Overhead 

 
Capacity overhead ρ is defined as %age increase in the resource requirement of a practical 
multiplexing scheme when compared to the optimal 

  
Amount of resources allocated to application i at time t using the optimal and practical allocation 
scheme respectively 
 
Gain in Statistical (Packet) Multiplexing 

 
 Each user: 100 kb/s when “active” 
 active 10% of time 
 Strict Multiplexing: 10 users 
 Statistical Multiplexing: with 35 users, probability > 10 active at same time is less than 

.0004  
 
Checksum 
Introduction 

 Transport layer incorporates error detection 
 Checksum is “checking the sum” both at the sender and receiver 
 Performed at the header or the entire body 

 
Operation in Brief & Performance 
 

 
 
 
 
Overhead and Operational cost 

 Divide the M-bit data into N-bit chunks 
– Total chunks M/N 

 Checksum is also N-bit 
 Total sums M/N + 1 

 
 



Undetected Errors 
 Reordering of 2 byte words, i.e. 01 02 03 04 changes to 03 04 01 02 
 Inserting zero-valued bytes i.e. 01 02 03 04 changes to 01 02 00 00 03 04 
 Deleting zero-valued bytes i.e. 01 02 00 00 03 04 changes to 01 02 03 04 
 Replacing a string of sixteen 0's with 1's or 1' with 0's 
 Multiple errors which sum to zero, i.e. 01 02 03 04 changes to 01 03 03 03 

 
Go Back N 
Introduction 

 Retransmission strategy (ARQ) 
 No need to buffer at receiver 
 Wheat and rice analogy! 

– Go back N is wheat 
– Fresher is better 

 
Performance Amidst Packet Loss 
 

 
Efficiency without Errors 
 

 
 

 Choose N large enough to allow continuous transmission while waiting for an ACK for the 
first packet of the window 

                               If N > S/DTP       E = min{1, N*DTP/S}  



Selective Repeat 
Introduction 

 Retransmission strategy (ARQ) 
 No need to retransmit all after loss 
 Buffer requirements at receiver 
 Wheat and rice analogy! 

– Selective repeat is wheat 
– Older is better 

 
Performance Amidst Packet Loss 
 

 
Efficiency without Errors 
 

 
 Same as Go Back N  
 If N > S/DTP    E = min{1, N*DTP/S}  

 
Efficiency with Errors 

 Only packets containing errors will be retransmitted 
                                      E= 1 - P 

Implications of buffer size 
 Buffer limit at sender 

― Number of un-ACKed packets at sender =< W 
 Buffer limit at receiver 

― Number of un-ACKed packets at sender cannot differ by more than W  
 



RTT Estimation and Timeout 
Fixed Window 
First case 
WS/R > RTT + S/R 

 ACK for first segment in window returns before window’s worth of data sent 
 
Delay Performance with Fixed Window 

 

 
 
Fixed Window 
Second case 
WS/R < RTT + S/R 

 Wait for ACK after sending window’s worth of data sent 
 K is the number of windows that cover the object 

 
Delay Performance with Fixed Window 

 
 



TCP Timeout Value 
 Longer than RTT 
 As RTT varies 

― Too short: premature timeout,  
― Unnecessary retransmissions 
― Too long: slow reaction to segment loss 
 

Estimating RTT 
 SampleRTT Measured time from segment transmission until ACK receipt 
 Ignores retransmissions 
 EstimatedRTT is “smoother” 
 Averages several recent measurements, not just current SampleRTT 

 
Relationship Between TimeOut and Estimated RTT 
 

EstimatedRTT =  (1- a)*EstimatedRTT + a*SampleRTT 
TimeoutInterval = EstimatedRTT + 4*DevRTT 

 
Reliable Data Transfer 

 TCP offers data reliability 
 In case data is lost or corrupted 

― Error Control 
― Flow control 
― Congestion control 

 Reliability at the cost of throughput 
 With slow start and FRFR, throughput is given by 

 

LRTT

MSS1.22

 
Reliability Services 
 

 
 
 
 
 
 



Handling Loss 
 

 
 
 
Early TimeOut 

 



Delayed Ack 
 

 
 
Flow Control 
Introduction 

 Receiver throttles the sender by advertising a window 
– Not larger than the amount of data that it can buffer 

 TCP on the receive side must keep 
LastByteRcvd − LastByteRead ≤ MaxRcvBuffer 
 
Implication  

 If local process reads data just as fast as it arrives  
 Causes LastByteRead to be incremented at the same rate as LastByteRcvd 
 Advertised window stays open 

         (AdvertisedWindow = MaxRcvBuffer) 
 If receiving process falls behind, advertised window grows smaller with every segment that 

arrives, until it eventually goes to 0 
 
Advertised Window 
 

 



Sender Window 
 

LastByteSent − LastByteAcked ≤ AdvertisedWindow 
 

 
Effective Window 
 

EffectiveWindow = AdvertisedWindow − (LastByteSent − LastByteAcked) 
 

 
 
Relationship between Max_Send and Max_Receive Buffer 
 

LastByteWritten − LastByteAcked ≤ MaxSendBuffer 
 

 
 
TCP Connection Management 
Cost and Feasibility Model 
Cohen, Edith, Haim Kaplan, and Jeffrey Oldham. "Managing TCP connections under persistent 
HTTP." Computer Networks 31.11 (1999): 1709-1723. 
Kurose and Ross. “Computer Networking Top-Down Approach Featuring the Internet”. 
 
 
Holding Time  

 Upon receiving an HTTP request r , the server decides on a holding-time interval T(r) 
 The server then leaves the connection open for at most T(r) seconds from the moment it 

received r 
 If a new request r' arrives within the next T(r) seconds, then a new holding-time interval 

T(r') is in effect 
 Otherwise the connection is terminated after T(r) seconds 

 



 
 
 
TCP State Transition 

 
 

 
 
TCP Client Lifecycle 
 

 



 
TCP Server Lifecycle 
 

 
 
 
Connection Management Policy (1 of 3) 

 Policy A is an algorithm that determines an interval T(r) for every request r 
 Consider a request sequence s 
 The profit (number of hits), PA of a policy A on s is the number of requests that did not 

require opening a new connection 
 The number of misses, MA of A on s is number of requests that require opening a new 

connection 
 The open-cost, HA of a policy A is total time connections are open 

 
What to model? 

 Trade-offs between open-cost and number of misses 
 
Principles of Congestion Control 
References 
RFC 2914: Congestion Control Principles 
Kurose and Ross. “Computer Networking Top-Down Approach Featuring the Internet”. 
 
Introduction 

 Too many sources sending too much data too fast for network to handle 
 Manifestations 
 Lost packets 

― buffer overflow at routers 
 Long delays 

― Queuing in router buffers 
 



 
 
Infinite Buffer Scenario 
 
 

 
 
 
Effects of Congestion 
 

 
 
 
 

 Large delays when congested 
 Maximum achievable throughput  

 
 
 
 



Finite Buffer Scenario 
 

 
 
Effects of Congestion 
 
 
 
 
 
 
 
  
 
 
 
 
a. No loss 
b. Perfect loss 
c. Imperfect loss 
 
Combat Strategies (1 of 2) 
End-end congestion control 

 No explicit feedback from network 
 Congestion inferred from end-system observed loss, delay 
 Approach taken by TCP 
 Network-assisted congestion control 
 Routers provide feedback to end systems 
 Single bit indicating congestion (SNA, DEC bit, TCP/IP ECN, ATM) 
 Explicit rate sender should send at 
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ATM ABR Congestion Control 
References 
Kurose and Ross. “Computer Networking Top-Down Approach Featuring the Internet”. 
 
Introduction 

 Available Bit Rate (ABR), a service used in ATM networks 
 Source and destination don't need to be synchronized 
 ABR does not guarantee against delay or data loss 
 Allow network to allocate available bandwidth fairly over present ABR sources 

 
Operation 

 Elastic service 
 If sender’s path is under loaded  
 Use available bandwidth 
 If sender’s path congested 
 Sender throttled to minimum guaranteed rate 

 

 
 
 
Combat Congestion  

 Two-byte ER (explicit rate) field in RM cell 
 Congested switch may lower ER value in cell 
 Sender’s send rate thus minimum supportable rate on path 
 EFCI bit in data cells is set to 1 in congested switch 
 If data cell preceding RM cell has EFCI set, sender sets CI bit in returned RM cell 

 
TCP Congestion Control 
References 
Kurose and Ross. “Computer Networking Top-Down Approach Featuring the Internet”. 
 
Introduction 

 End-end control (no network assistance) 
 Sender limits transmission 

LastByteSent-LastByteAcked<= CongWin 
 CongWin is dynamic, function of perceived network congestion 

 
 



Operation 
 Loss event = timeout or 3 duplicate acks 
 TCP sender reduces rate (CongWin) after loss event 
 Three mechanisms 

― AIMD 
― Slow start 
― Conservative after timeout events 

 

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

   
 
Leaky Bucket and Token Bucket 
 
Leaky Bucket 

 Buffering of the traffic to help manage and control the flow of traffic onto and through the 
network 

 “Leaky” means buffer that is constantly flowing 
 
Operation 

 Traffic enters into the buffers and is tagged, based on the amount of packets allowed by the 
carrier 

 If the user exceeds the amount of packets flow per increment then the buffer is filled and 
begins to empty out the bottom side at a constant rate 

 
Leaky Bucket Algorithm 
 

 
 



Token Bucket 
 Many traffic sources can be defined by token bucket scheme 
 Provides concise description of load imposed by flow 
 Easy to determine resource requirements 

 
Operation  

 Provides input parameters to policing function 
 IP packet may be processed if sufficient octet tokens to match the IP data number of tokens 
 If insufficient tokens available, the packet is relegated to best-effort service 
 To transmit a packet through router, one token must be removed 
 If token bucket is empty, packet is queued waiting for next token 
 If there is backlog of packets & an empty bucket, packets emitted smoothly 

 
 

 
 
Quality of Service 
Background  

 Broadband IP packet networks are multiservice, all-purpose communications platforms 
 Spurred QoS efforts 
 Simplest strategy to the one-size-fits-all best-effort service in today’s Internet: divide traffic 

into classes 
 Provide different levels of service to these different classes of traffic 

 
Introduction  

 QoS a non-issue for circuit-switched networks 
 Layer 2 and 3 QoS approaches 
 ATM and Frame Relay provide L2 QoS  
 Provide circuit-like emulation 
 Traffic agreements 
 Traffic control 
 Connection admission control 
 Congestion notification 
 Fragmentation 



QoS at Network Layer  
 IP QoS is concerned with end-to-end internetwork 
 With every hop L3 QoS parameters mapping to L2 QoS 
 Type of Service (TOS) field provides initial IP network class of service mechanism 
 Three precedence bits classify eight categories of services 
 Lower precedence dropped for higher precedence in congestion 
 Network equipment vendors rarely provide precedence bits usage 

 
QoS Models  

 Two QoS models for IP packet networks 
 IntServ 

― Simulate “virtual circuit” of ATM or frame relay on L3 
― Sets up an end-to-end route with fixed QoS parameters 

 DiffServ 
― Defining several common classes of service 
― Each with associated queue priorities and drop precedence on a per-hop basis 

 
Hard vs Soft QoS 

 Hard guarantee applications will receive its requested quality of service (QoS) with certainty 
 Soft guarantee application will receive its requested quality of service with high probability 

 
Fair Queues 
First In First Out 

 
 
Motivation for FQ 

 During periods of congestion, FIFO queuing benefits UDP flows over TCP flows 
 A bursty flow can consume the entire buffer space of a FIFO queue 
 PQ totally favours TCP over UDP 

 
Introduction 

 FQ is foundation for a scheduling disciplines designed to ensure that each flow has fair 
access to network resources 

 Prevents a bursty flow from consuming undue bandwidth share 
 Also called per-flow or flow-based queuing 

 
 



 
 
Operation 

 Packets are first classified into flows by the system 
 Assigned to a queue that is specifically dedicated to that flow 
 Queues are then serviced one packet at a time in round-robin order 
 Empty queues are skipped 

 
Fair Queuing with Classifier 
 

 
 
Benefits 

 Primary benefit of FQ is extremely bursty or misbehaving flow does not degrade QoS 
delivered to other flows 

 Each flow is isolated into its own queue 
 If a flow attempts to consume more than its share of BW, its queue is affected 

 
Performance  

 Allocation of single resource amongst N users 
 Total resource µTotal 
 Each user i requests ρi 
 Each user i receives µi Conditions: 
 No user receives more than its request 
 No other user satisfying condition 1 has a higher minimum allocation 
 Above condition remains recursively true as we remove the minimal user & reduce total 

resource 
 µTotal« µTotal –µi 
 Conditions: 
 µi= Min(µFair –ρi) 
 Above condition remains recursively true as we remove the minimal user & reduce total 

resource 

μTotal= ∑ μ i
 

 



Priority Queues 
Motivation 

 Designed to provide a relatively simple method of supporting differentiated service classes 
 To provide respective services to 

– Interactive traffic 
– Voice 
– Video 
– And best effort 

 
Operation 

 Packets classified and placed into different priority queues 
 Packets scheduled from the head of a queue only if all queues of higher priority are empty 
 Within each of the priority queues, packets are scheduled in FIFO order 

 
Priority Queuing with Classifier 
 

 
 
 
Priority Queuing with Classifier 
 
 
 
 
 
 
Trj : Resident time of an item j in queue k 
Tsi : Service time of an item i i.e., processing time by the system 
 
 
Variants  

 Strict priority queuing 
– packets in a high-priority queue are always scheduled before packets in lower-

priority queues 
 Rate-controlled priority queuing 

– High-priority queue scheduled before lower-priority queues 
– Only if the amount of traffic in the high-priority queue stays below a user-configured 

threshold 
 



Static Window Modeling 
Assumption 

 Assume one link between client and server of rate R 
 S: MSS (bits) 
 O: object size (bits) 
 No retransmissions (no loss, no corruption) 
 Fixed congestion window, W segments 

 
A simple one-link network connecting a client and a server 

 
 
 

 
Operation (1 of 2) 

 Server not permitted to have more than W unacknowledged outstanding segments 
 Server receives request from client 
 Server sends W segments back-to-back to the client 
 . Server then sends one segment into the network for each acknowledgement it receives 
 Server continues to send one segment for each acknowledgement until all of the segments of 

the object have been sent 
 
First Case 

 Server receives ACK for first segment of first window before completing transmission of 
first window 

 WS/R > RTT + S/R 
Delay = 2RTT + O/R 



Static Window Modeling—2 
A simple one-link network connecting a client and a server 

 
 

Second Case 
 Server transmits first window's worth of segments before the server receives ACK for first 

segment in the window 
WS/R < RTT + S/R 

 It is a scenario where the propagation delay dominates transmission time 
 

 
 

Delay = 2RTT + O/R+ (K-1)[S/R + RTT – WS/R] 
 
Dynamic Window Modeling 
TCP Congestion Dynamics 

 



Assumptions 
 Server starts with congestion window of one segment 
 When it receives an ACK for segment, it increases its congestion window to two segments 
 Sends two segments to the client 
 Congestion window doubles every RTT 

 

 

 
 
Example 

 O/S  = 15 segments 
 K = 4 windows 
 Q = 2  
 P = min{K-1,Q} = 2  

Server idles P=2 times 
 



End-to-End Windows 
Limitations 

 Cannot guarantee a minimum rate for a session 
 Not suited for 

– Voice and video 
 Window size tradeoff requirements 

– Limit no. of packets in subnet 
– Full-speed transmission and max throughput 

 
Delay-Throughput Trade-off 

 
 
Node-by-Node Windows 
Unfairness Problem in End-to-end 
Long sessions with larger windows take precedence in intermediate devices 

 
Virtual Circuit Windowing 

 A separate window for every VC & pair of adjacent nodes along path of VC Main idea 
 Receiver avoids accumulation of large no. of packets into its memory 

– Slows down permit returns to sender 
 
Backpressure Effect in VCs 

 
 



Round Robin + Node-by-node 
 

 
 
Little's Theorem 
Big Questions  

 What is the avg no. of customers in the system? 
– The "typical" no. of packets either waiting in queue or undergoing service 

 What is the avg delay per customer? 
 The "typical" time a packet spends waiting in queue plus the service time 

 
Definition 
N= l´T 

 N = No. of customers 
 l  =  Arrival rate 
 T = Time spent by customers (packets) in the system 

 
Interpretation 

 Little's Theorem expresses crowded systems 
 Large N associated with long customer delays (T) & vice versa 
 Not influenced by arrival process distribution, service distribution, service order, etc. 

 
Probabilistic Little's Theorem 
Time average 

 The time average of a function is found by evaluating a measure space with the average 
taken over a time, ΔT 

 Pn(t) = Probability of n customers in the system at time t 
 
Statistical (Ensemble) average 

 Defined as the number that measures the central tendency of a given set of numbers 
 A number of different averages 
 Mean, median, mode and range 



 
Probabilistic interpretation 

 Little's Theorem admits also a probabilistic interpretation for stationary process 
– Time avg replaceable with statistical avg 

 
Application 

 Little's Theorem becomes applicable to deterministic and probabilistic systems 
– a situation does not exist where the theorem does not hold 
– Often termed as law 

 
Little's Theorem; Applications 
End-to-end flow control 

 Recall that end-to-end windows fail to provide adequate control of packet delay 
 Little's theorem helps understand the relation 

– Window size 
– Delay 
– Throughput 

 
Average delay per packet 

 n flow controlled sessions in the network with fixed window sizesW1,...Wn 
 b = whether piggybacking supported or not 
 l = throughput (total accepted input rate of sessions) 

 

 
Throughput and Delay vs Active Flows 
When network is heavily loaded,avg delay per packet increases approximately linearly with the 
number of active sessions—the total throughput stays approximately constant 
 

 
 
 



Arrivals as Poisson 
M/M/1 system 

 The M/M/1 queuing system consists of a single queuing station with a single server 
– Communication context: a single transmission line 

 Probability distribution of the service time is exponential with mean 1/m sec 
 
Arrivals 

 Customers (packets) arrive according to a Poisson process 
 A(t) is a counting process that represents the total number of arrivals that have occurred 

from to time t 
 
Poisson Process  

 A Poisson process is generally considered to be a good model for the aggregate traffic of a 
large number of 

– Similar and  
– Independent users 

 Merges n independent & identically distributed arrival processes 
 Each process has arrival rate l/n 
 So the aggregate process has arrival rate l 
 No. of arrivals occurring in disjoint time intervals are independent 
 No. of arrivals in any interval of length t is Poisson distributed with parameter lt 

 

 
Poisson Distribution 

 
 



Service Statistics 
What is service? 

 The set of activities performed at the receiving device 
 Router 

– MAC processing 
– Lookup 
– Forwarding decision 

 Switch 
– Header processing 
– Port allocation table 

 
Service distribution  

 Sn is the service time of the nth customer 
 Customer (packet) service times have an exponential distribution with parameter m 
 m is also called service rate 
 Represents the rate (in customers served per unit time) at which the server operates when 

busy 
 Service times are mutually independent 
 Also independent of all inter-arrival times 
 Density function 
 Service distribution 

 

\ 
 
Commentary 

 In the context of a packet transmission, independence of inter-arrival and service times 
implies,  

– Length of an arriving packet does not affect the arrival time of the next packet 
Exponential Distribution 
Memorylessness 

 Additional time needed to complete a customer's service in progress is independent of when 
the service started 

 Time up to the next arrival is independent of when the previous arrival occurred 
 

 
 



Arrival Occupancy Distribution 
System under change 

 Users (packets) come and leave the system 
– System under continuous change of occupancy 

 It is possible that the times of customer arrivals are in some sense nontypical 
 
Non-Typical Arrival 

 
Typical Arrival 

 
 

Occupancy distribution 
 For M/M/1 systems 
 pn = an for n =0,1,... 
 Arriving customer finds the system in a "typical" state 
 Future arrivals are independent of the current number in the system 

 
Simulating TCP Receive Buffer 
Operation 

 RFC 1122 identifies host implementation requirements 
― Includes receive buffer to cache sequenced data not yet forwarded 

INET Support 
 It stores bytes and not segments 
 Few implementations store segments on the retransmission queue, and others store only the 

data bytes 
 
Receiver Window 

LastByteSent – LastByteAcked 
 
 

 
 
Receive Buffer Support  

 inet::tcp::TCPReceiveQueue::getAmountOfBufferedBytes () 
 Returns the number of bytes currently buffered in queue 
 inet::tcp::TCPReceiveQueue::getAmountOfFreeBytes (uint32   maxRcvBuffer)   
 Returns the number of bytes currently free (=available) in queue 

 



inet::tcp::TCPReceiveQueue Class 
 

 
 
Departure Occupancy Distribution 
 
System under change 

 Users (packets) come and leave the system 
– System under continuous change of occupancy 

 It is possible that the times of customer departures are in some sense nontypical 
 
Non-Typical Departure 
 

 
 
Typical Departure 

 
Occupancy distribution 

 For M/M/1 systems 
 dn = an for n =0,1,... 
 For each time the number in the system increases from n to n+1 due to an arrival, there will 

be corresponding decrease from n+1 to n due to departure 
 
TCP BER Performance 
Operation 

 RFC 2581 identifies identifies the operation in the wake of TimeOut 
 
TCPReno::recalculateSlowStartThreshold() [protected, virtual] 
{ 
    // set ssthresh to flight size/2, but at least 2 MSS 
    // (the formula below practically amounts to ssthresh=cwnd/2 most of the time) 
    uint flight_size = std::min(state->snd_cwnd, state->snd_wnd); 
    state->ssthresh = std::max(flight_size/2, 2*state->snd_mss); 
    if (ssthreshVector) ssthreshVector->record(state->ssthresh); 
} 
 
 
 
 



tcp_old::TCPReno Class Reference 
 

 
 
 
Problem Set 2 
TCP TimeOut 
Suppose that the five measured SampleRTT values are 106, 120, 140, 90 & 115 ms. Compute the 
EstimatedRTT after each of these SampleRTT values is obtained, using a value of α = 0.125 & 
assuming that the value of EstimatedRTT was 100 ms just before the first of these five samples 
were obtained. Compute also the DevRTT after each sample is obtained, assuming a value of β = 
0.25 and assuming the value of DevRTT was 5 ms just before the first of these five samples was 
obtained. Last, compute the TCP TimeoutInterval after each of these samples is obtained. 
 
TCP Flow and Congestion Control 
Host A is sending an enormous file to Host B over a TCP connection. Over this connection there is 
never any packet loss and the timers never expire. Denote the transmission rate of the link 
connecting Host A to the Internet by R bps. Suppose that the process in Host A is capable of sending 
data into its TCP socket at a rate S bps, where S = 10 · R. Further suppose that the TCP receive 
buffer is large enough to hold the entire file, and the send buffer can hold only one percent of the 
file. What would prevent the process in Host A from continuously passing data to its TCP socket at 
rate S bps? TCP flow control? TCP congestion control? Or something else? Elaborate. 
 
Virtual Circuit Networks 
Basics 

 Source-to-destination paths behave much like telephone circuit 
 Performance guaranteed 
 Network actions along source-to-dest path needed 

Operation 
 Call setup, teardown for each call before data can flow 
 Each packet carries VC identifier 
 Every router on source-dest path maintains “state” for each passing connection 
 Resources (bandwidth, buffers) allocated to VC 

 
 
 



Packets Along the Same Path 

 
 

Two Links Network Example 
 

 
Stability Issues in VCs 
 

 
 

 Arrival rate on link 1 using the shortest path  
 Only one path is used for routing at anyone time if the shortest path update period is much 

larger than the time required to empty the queue of waiting packets at the time of an update 
 



Datagram Networks 
Basics 

 Two packets of the same user pair can travel along different routes 
 A routing decision is required for each individual packet 

 
Packets Along Different Paths 
 

 
 

Complexity 
 Each iteration of link state routing protocols 
 n(n+1)/2 comparisons: O(n2) 
 More efficient implementations possible: O(nlogn) 

 
Oscillations 

 Given these costs, finding new routes resulting in new costs 

 
Input Processing 
Basics 

 Two key router functions:  
 Run routing algorithms/protocol (RIP, OSPF, BGP) 
 Forwarding datagrams from incoming to outgoing link 

 



Router Functionality 
 

 
 
Router Input 

 
 
Distributed Switching 

 Given datagram dest., lookup output port using forwarding table in input port memory 
 Complete input port processing at ‘line speed’ 
  

Input port queuing 
 Fabric slower than input ports combined 
 Queuing may occur at input queues  

 
Input Port Queuing 
 

 



Output Processing 
Operations 

 Buffering required when datagrams arrive from fabric faster than the transmission rate 
― If Rswitch is N times faster than Rline 

 Scheduling discipline chooses among queued datagrams for transmission 
 
Router Output Interface 
 

 
Output Port Buffering 
 

 
 

How much to Buffer? 
 RFC 3439: average buffering equal to “typical” RTT (say 250 msec) times link capacity C 
 C = 10 Gpbs link 
 2.5 Gbit buffer 
 With N flows, buffering equal to  

 

 
Head of Line Blocking 
Input Port Overflow 

 Fabric slower than input ports combined   queuing may occur at input queues  
 Queuing delay and loss due to input buffer overflow! 

 
Head of Line 

 Queued datagram at front of queue prevents others in queue from moving forward 
 
 
 
 



Scenario 
 

 
 
 
Random Early Detection 
Drop Tail 

 Conventional tail drop algorithm 
 A router buffers as many packets as it can 
 Simply drops the ones it cannot buffer 
 If buffers constantly full, network is congested  
 Tail drop distributes buffer space unfairly among traffic flows 

 
Active Queue Management 

 When buffer becomes full or gets close to becoming full 
 AQM is intelligent drop network congestion of network packets inside a buffer of NIC 
 Often with the larger goal of reducing  

 
Drop Tail 

 Conventional tail drop algorithm 
 A router buffers as many packets as it can 
 Simply drops the ones it cannot buffer 
 If buffers constantly full, network is congested  
 Tail drop distributes buffer space unfairly among traffic flows 

 
RED Operation 

 Monitor avg queue size & drop packets based on probabilities 
 If buffer empty, all incoming packets accepted 
 As queue grows, P for dropping incoming packet grows 
 When buffer full, P = 1 all incoming packets dropped 

 
 
 



Operation: 
 
 

                    
 
 
 
RED with In & Out (RIO) 
Background  

 Similar to RED, but with two separate probability curves 
 Has two classes, “In” and “Out” (of profile) 
 “Out” class has lower minimum threshold 
 Packets are dropped from this class first 
 As avg queue length increases, “In” packets are dropped 
 Since best-effort is included in the “Out” class, assured traffic can starve best-effort 

 
 
 
Operation 
For each packet arrival 
if it is an In packet 
calculate the average In queue size avg_in ; 
calculate the average queue size avg_total ; 
If it is an In packet. 
if min_in < avg_in < max_in 
calculate probability P in 
with probability P in , drop this packet; 
else if max_in < avg_in 
drop this packet. 
If it is an Out packet 
if min_out < avg_total < max_out 
calculate probability Pout; 
with probability Pout drop this packet; 
else if max_out < avg_total 
drop this packet 
                                    
 
 
 
 



Operation 
 

 
 
 
Routing Algorithms 
Interplay 

 Routing algorithm determines end-end-path through network  
 Forwarding table determines local forwarding 

– at this router 
– for IP destination address in  arriving packet’s header 

 

 
Graph abstraction 

 Graph: G = (N,E) 
 N = set of routers = { u, v, w, x, y, z } 
 E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) } 

 



 
 
Cost 

 Cost could always be 1 
 Or inversely related to bandwidth 
 Or inversely related to congestion 
 Cost of path 
 (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp) 

 
Algorithms 
Key question: What is the least-cost path between u and z? 
Routing algorithm: Algorithm that finds that least cost path 
 
 
Complexity of Link State 
Global Routing 

 All routers have complete topology, link cost information 
  Every node constructs a map of the connectivity to the network in the form of a graph 

Shows which nodes are connected to which other nodes 
 
Link State 

 Each node independently calculates best path from it to every possible destination in the 
network 

 The collection of best paths will then form the node's routing tables 
 Iterative: After k iterations, know path to k destination 

 
Complexity 

 For n nodes 
 Each iteration: need to check all nodes, w, not in route discovered set N 
 Full-mesh: n(n+1)/2  
 Omega Notation: O(n2) 

 
Complexity of Distance Vector 
Distributed Routing 

 Router knows physically-connected neighbors + link costs to neighbors 
 Iterative process of computation 
 Exchange of info with neighbors 

 
Key Idea 

 From time-to-time, each node sends its own distance vector estimate to neighbors 
 when x receives new DV estimate from neighbor, it updates its own DV using B-F equation 

 



Count to Infinity Problem 
Link Cost Changes 

 Node detects local link cost change 
 Updates routing info 
 Recalculates distance vector 
 If DV changes, notify neighbours 

 
Good news 

 
 

 At time t0, y detects the link-cost change, updates its DV,  
 & informs neighbors 
 At time t1, z receives the update from y and updates its table 
 It computes new least cost to x  &  sends neighbors its DV 
 At time t2, y receives z’s update, updates 
 y’s least costs do not change, y  does not send message to z 

 
Bad News!  

 
 Good news travels fast 
 Bad news travels slow 
 Takes 44 iterations before Z eventually computes its path via Y to be larger than 50 

 
Bad News Causes Loops  

 
At time t0 Y detects the link cost change (the cost has changed from 4 to 60). Y computes its new 
minimum cost path to X to have a 
cost of 6 via node Z. Of course, we can see that this new cost via Z is wrong 



 
 
But the only information node Y has is that its direct cost to X is 60 and that Z has last told Y that Z 
could get to X with a cost of 5. So in order to get to X, Y would now route through Z, fully 
expecting that Z will be able to get to X with a cost of 5 
 

 
So in order to get to X, Y would now route through Z, fully expecting that Z will be able to get to X 
with a cost of 5. As of t1 we have a routing loop—in order to get to X, Y routes through Z, and Z 
routes through Y. 
 

 
 
A routing loop is like a black hole—a packet arriving at Y or Z as of t1 will bounce back and forth 
between these two nodes forever or until the routing tables are changed 
 



Poisoned Reverse 
Need 

 Bad news travels very slow, especially if the cost change is large 
 Ping-pong effect due to looping is undesirable 
 Nodes are blindly following what is told to them 
 Solution: Tell a small lie! 

– Poison the link 
Operation 

 
 If Z routes through Y to get to X 
 Z tells Y its (Z’s) distance to X is infinite (so Y won’t route to X via Z) table 
 This lie prevents the loop 

 
Performance 

 
 Poisoned reverse does not work if more than 3-neighbors are involved in looping 
 Other techniques such as packet or broadcast ID are incorporated 

 
Hierarchical Routing; Complexity 
Need 

 All routers identical with a flat network is not true in practice 
 Routers vary  

– Connectivity 
– Bandwidth  
– Resources & Cost 

Each network admin wants autonomy 
Solution: Make a hierarchical relationship between them. 
 
Methodology 

 Collect routers into regions, “autonomous systems” (AS) 
 Each AS within an ISP 
 ISP may consist of one or more ASes 
 In same AS run same routing protocol 
  “intra-AS” routing proutersrotocol 

– routers in different 
            AS run differentintra-AS routing protocol 

 Gateway router: 
– At “edge” 
– Has  link to router in another AS 



 Forwarding table configured by both intra- and inter-AS routing algorithm 
 intra-AS sets entries for internal dests 
 inter-AS & intra-AS sets entries for external dests  

 

 
 

 

 
 

 
 
 



Elastic Aggregates & TE 
A Generalized Scenario 
 

 
Traffic Aggregate 

 Suppose that a request arrives for downloading a file of size V bytes 
 V bytes must be transferred from s to t 
 Number of download requests arriving over T interval is N(T) 

V1 , V2 , . . . , VN(T) 
 

 
 
Average Requests 

 Over the interval T, if EV is the average file size 
 Average requests for an aggregate amount 

 

 
Offered Load 

 Dividing both sides by T, we get 
– Avg rate at which V(T) grows with time  
– Avg rate at which download requests arrive 

ρ = λ EV 
 ρ = Offered load expressed in bytes/sec 
 λ = Average arrival rate of download requests 

 
 Optimal Routing 
Feasible Routing 

 The sum of all flows on a link should stay below the link capacity 
x(1) + x(2) + · · · + x(K) ≤ C 

 Spare capacity 
z = C − (x(1) + x(2) + · · · + x(K)) 
 
Optimization Problem  

 Given a network and a set of demands, there may be many feasible routes 
 To choose one route from a set, define an objective function 
 Choose the route that optimizes the objective function 
 Optimal routing is the one that maximizes the smallest spare capacity  
 Reasonable, because any link in the network has a spare capacity of at least z 
 Increases chance that a future demand between any pair of nodes finds sufficient free 

capacity. 



 
Limitations of Min Hop Routing 
Scenario 

 
 
Shortest path = Min hop routing 

 If weight along each edge (link) set to 1 
 Total bandwidth on a route is d × H 
 Hmin takes min resources 
 Least resource consumption 
 H = no. of hops on chosen route 
 Demand requires bandwidth d 

 
Disadvantages 

 Consider that x uses a and b to reach y 
  It results in non-utilization of direct hops between them 
 Other source-destination pairs would never use these resources 
 Network is partitioned  

 
Formulation of Routing Problem 
Shortest path is  most congested 

 One or more links in a network get congested 
– Form sub-paths on shortest path 

 Unused bandwidth is available on other links 
 
Routing as a User-Network-Traffic-QoS Phenomenon 
 

 



Defining Routing Problems 
 Shortest-widest path 
 Widest-shortest path 
 Least-loaded routing 
 Maximally loaded routing 
 Profile-based routing 

. 
Minimum Interference Routing 
Route interference 

 Any chosen route from a router a to another router b can possibly reduce the capacity 
available for demands between other node pairs 

– Often a phenomenon in ISP backbone sharing 
 
Max Flow 

 Maxflow (s, t) is a scalar 
 Indicates the maximum amount of traffic that can be sent from s to t 
 Exploits all possible paths through the network 

– An upper bound on the total bits/sec that can be sent from s to t 
 
Minimum interference 

 Idealy zero interference 
 If maxflow (s, t) remains unchanged 
 Path used for the (a, b) demand does not share any link with the set of paths available for (s, 

t) 
 Non-zero minimum interference 
 Paths share minimum hops 

 
Problem Formulation 

 After the (a, b) demand has been routed, the smallest maxflow value among all other (s, t) 
pairs is maximized 

Example 
Consider four flows, w.r.t (a, b).  

 (30, 15, 6) corresponds to path P1 for (a, b) 
 (12, 19, 8) corresponds to path P2 for (a, b) 
 (3, 12, 16) corresponds to path P3 
 Route P 2 is the minimum interference route for the (a, b) demand 

 
QoS Routing 
Single Stream 

 A single stream session comes with 
 A given bandwidth requirement 
 A specified end-to-end delay requirement 
 Arrives at the network 
 QoS routing is to find a “good” route for the session 

 
 
Network Operator 

 Wider and holistic objectives 
– Minimization of total bandwidth consumed 
– Maximization of the smallest spare capacity on the links of the network 

 



Tradeoff  
 End to end 
 Hop by hop 
 Two QoS models for IP packet networks 
 IntServ 

– Simulate the “virtual circuit” of ATM or frame relay on layer-3 
 Sets up an end-to-end route with fixed QoS parameters 
 DiffServ 
 Defining several common classes of service with associated queue priorities and drop 

precedence on a per-hop basis hops 
 
Nonadditive Metrics 
Definition 

 Nonadditive link metrics cannot be summed over the links of a path to obtain the path metric 
 Must be aggregated through another way 
 Example: Bandwidth 
 Requires d units of BW 
 The least available link bandwidth along the path should be d 

 
Application 

 Wider and holistic objectives 
– Minimization of total bandwidth consumed 
– Maximization of the smallest spare capacity on the links of the network 

Implications 
 What if no path exists? 

– S-D get isolated 
 What if more than one path exists? 
 BW measurement freq & accuracy is a tradeoff 
 BW measurement is not exact 

Solution 
 Choose path with highest Prob of having d units 

 
Additive Metrics; RMB 
Definition 

 Additive link metrics are summed over the links of a path to obtain the path metric 
 Example: end-to-end delay 
 If eah link offers t units of delay 
 The total links N delay is Nt 

 
Rate-based Mux 

 A multiplexer takes input from various streams of traffic and puts them out on a single line 
– Used fixed sized frames 

 Rate matching of heterogeneous sources is required 
 Example: WFQ 

 
Weighted Fair Queuing 

 WFQ supports fair distribution of BW for variable-length packets 
– Weighted bit-by-bit round-robin scheduling 

 Fair allocation of bandwidth 
 Each queue receives its configured share of output port bandwidth 

 



Finding Feasible Routes 
Network Model 

 G(N , L) is the network 
 N is the set of nodes 
 L is the set of links 
 ξ1 = sum of prop delay & maximum TXN time on link l 
 Cl be the available capacity on link 
 K = source–destination pairs in the network 
 Consider a path P through the network between a source router and a destination router 
 Capacity on path P = minl∈P Cl 
 H(P) = No. of hops (i.e., links) on path P 
 Consider a path P through the network between a source router and a destination router 
 Capacity on path P = minl∈P Cl 
 H(P) = No. of hops (i.e., links) on path P 

 
Problem 

 Find, on connection arrival, a route connecting the SD pair 
– Rate to be allocated on that route 
– Connection’s delay and rate requirements are satisfied 
– Capacity constraints are not violated 

 
Upper bound on delay 

 Required end-to-end delay 
 If all the paths are computed 

 
– Multi-commodity problem 
– NP hard 

 
Upper Bound on Performance 
Route and Rate Allocation (RRA) 

 λ connections distrib over I classes given to G(N , L) network 
 ρikλ = number of class i connections for SD pair k 

 
 If not all connections can be admitted due to capacity, select a subset for admission 

 
Problem Formulation 

 What is the maximum value (revenue) of the minimum weighted carried traffic (Wmin) that 
any RRA algorithm can extract from the network? 

 
Offline Routing (Integer Linear Program) 

 



 
 sik = carried traffic of class i for SD pair k 
 nij = No. of class i connections carried on path j 

 
Non-Rate-Based Multiplexers 
Additive Metric 

 Non-rate muxes are unlike rate-based 
– Rate requirement is relieved 

 Other requirements emerge 
– Bit error rate 
– Packet Loss Probabilities 
– Preferential links or paths 

 
Multi-constrained Feasibility Problem  

 m additive constraints are given 
 Objective: find a path that satisfies all m constraints 

 
Multi-constrained Feasibility Problem  

 m additive constraints are given 
 Objective: find a path that satisfies all m constraints 
 In case several paths satisfying all m constraints are available 
 No criterion specified for choosing one from this set of paths 

– Not defined as an objective function in the optimization problem 
 
Heuristic Interpretation As Constrained Region 

 
λ(P) = α1λ1(P) + α2λ2(P) 
m path metric values λ 1(P), ..., λi(P),...,λm(P), map to a single real value that represents the effective 
path length. 
 



Efficient Longest Prefix Match 
Operation at Router 

 Perform a logical AND of netmask and 32-bit destination IP address in the packet 
 If result matches network prefix in the forwarding table entry,  
 Next hop is the corresponding entry in table. 
 Route lookup a search problem 

 
Longest Prefix Match 

 Multiple matches of forwarding table entries to a destination IP address are handled through 
LPF 

 If there are multiple matches to an IP address 
– One matching longest network prefix is returned by the lookup function 

 
Binary Trie  

 Forwarding table organized as binary trie 
– Essentially a binary tree 

 Each vertex at level k corresponds k bits prefix 
 Each vertex has 2 children 

– k bit prefix expanded to (k + 1) bit prefix 
 Route lookup essentially involves tracing 32-bit destination address in the trie to find the 

vertex 
 The entry in the forwarding table that matches the longest prefix 

 
 
 
Sample Forwarding Table & Representation 
 

             
 
 
 



 
 
Trie Traversal for 1000000 

 
Level-Compressed Tries 
Traversal Time 

 Binary Tree is a graph 
 Complexity of depth-first traversals is O(n+m) 
 Complexity then becomes O(n + n-1), which is O(n) 

 
 
Level Compress  

 Rather than define a level for each bit of the address 
– Define a level for groups of contiguous bits 

 A simple case of level compression is to have a level for every K bits 
 For N bits in address, then the number of levels is N/K 
 Instead of two-way branch from each vertex of the trie 2 K-way branch 
 Another view of level compression is to say that a subtree of height k is compressed into one 

level 
 
Level Compression or Prefix Expansion 
 

                  
 



Trie (Retrieval) Traversal for 1000000 

 
Flooding; ARPANET Algorithm 
Usage of Flooding 

 An algorithm whereby a node broadcasts a topological update message to all nodes 
 Sending the message to its neighbors 

– Which in tum send the message to their neighbors, and so on 
 
Indefinite Flood 

 Transmission of messages never terminates 
– Rule: node that receives a message relays it to all of its neighbors except from which 

it received 
 
Level Compress  

 Instead of two-way branch from each vertex of the trie 
– 2 K-way branch 

 Another view of level compression is to say that a subtree of height k is compressed into one 
level 

 
Indefinite Flood Problem 
 

 A failure of link (1-2) is communicated 
to node 3 which triggers an indefinite 
circulation of the failure message along 
the loop (3,4,5) in both directions 

 

 

 
 
ARPANET Solution 

 Store enough information in update messages and network nodes 
 To ensure that each message is transmitted by each node only a finite number of times 

– Preferably only once 



 ARPANET used Sequence Numbers 
 
Operation 

 When a node j receives a message that originated at some node i 
 Check if its seq no. > seq no. the message last received from i 
 Yes: message stored in memory 
 Transmit to all its neighbors except sender 
 No: discard 

 
Flooding w/o Periodic Updates 
Redundancy of Periodicity 

 Periodic updates needed because if some updates are sent but not incorporated 
 Node crashes 
 Transmission errors 

– Routing tables become inconsistent 
 However under normal circumstances 

– Not needed 
 
Need-based Updates 

 Zero seq no allowed only when node is recovering from a crash 
– Situation where all of the node's incident links are down 
– And it is in the process of bringing links up 

 Separate seq no. for each origin node 
 
The Problem 

 
 Link (2,3) goes down, then link (1,2) goes down, and then link (2,3) comes up while node 2 

resets its sequence number to zero 
 Nodes 2 and 3 exchange their (conflicting) view of the status of the directed links (1 ,2) and 

(2, 1) 
 Both nodes discard each other's update message since it carries a sequence number zero 

which is equal to the one stored in their respective memories. 
 
The Solution 

 
 

 Depending on the lexicographic rule used 
– Either the (correct) view of node 2 regarding link (2, 1) will prevail right away 
– Or else node 2 will issue a new update message with sequence number 1 and its view 

will again prevail 
 

 



Broadcast without Seq. Nos. 
Redundancy of Periodicity 

 Periodic updates needed because if some updates are sent but not incorporated 
 Node crashes 
 Transmission errors 

– Routing tables become inconsistent 
 However under normal circumstances 

– Not needed 
 
 
Need-based Updates 

 Zero seq no allowed only when node is recovering from a crash 
– Situation where all of the node's incident links are down 
– And it is in the process of bringing links up 

 Separate seq no. for each origin node 
 
 
 
The Problem 

 
 Link (2,3) goes down, then link (1,2) goes down, and then link (2,3) comes up while node 2 

resets its sequence number to zero 
 Nodes 2 and 3 exchange their (conflicting) view of the status of the directed links (1 ,2) and 

(2, 1) 
 Both nodes discard each other's update message since it carries a sequence number zero 

which is equal to the one stored in their respective memories. 
 
The Solution 

 
 Depending on the lexicographic rule used 

– Either the (correct) view of node 2 regarding link (2, 1) will prevail right away 
– Or else node 2 will issue a new update message with sequence number 1 and its view 

will again prevail 
 
 
 
 
 
 
 



 
 
 
 
Problem Set 1 
Topology for SPF Algorithm 
 

 
Routing Algorithm Complexity 
With the indicated link costs, use Dijkstra’s shortest-path algorithm to compute the shortest path 
from x to all network nodes. 
 
Inter-AS Connectivity 

 
 
 
Operation of Inter-AS Routing Protocols 
Consider the network. Suppose AS3 and AS2 are running OSPF for their intra-AS routing protocol. 
Suppose AS1 and AS4 are running RIP for their intra-AS routing protocol. Suppose eBGP and 
iBGP are used for the inter-AS routing protocol. Initially suppose there is no physical link between 
AS2 and AS4. 
 



Operation of Inter-AS Routing Protocols 
a. Router 3c learns about prefix x from which routing protocol: OSPF, RIP, eBGP, or iBGP? 
b. Router 3a learns about x from which routing protocol? 
c. Router 1c learns about x from which routing protocol? 
d. Router 1d learns about x from which routing protocol? 
 
Problem Set 1 
Switching Fabric Performance in Routers 
If the maximum queuing delay is (n–1)D for a switching fabric n times faster than the input line 
rates. Suppose that all packets are of the same length, n packets arrive at the same time to the n 
input ports, and all n packets want to be forwarded to different output ports. What is the maximum 
delay for a packet for the (a) memory, (b) bus, and (c) crossbar switching fabrics? 
 
Subnetting 
Consider a subnet with prefix 128.119.40.128/26. Give an example of one IP address that can be 
assigned to this network. 
 
Subnet Prefixes 
Suppose an ISP owns the block of addresses of the form 128.119.40.64/26. Suppose it wants to 
create four subnets from this block, with each block having the same number of IP addresses. What 
are the prefixes (of form a.b.c.d/x) for the four subnets? 
 
Fragmentation & Reassembly 
Consider sending a 2400-byte datagram into a link that has an MTU of 700 bytes. Suppose the 
original datagram is stamped with the identification number 422. How many fragments are 
generated? What are the values in the various fields in the IP datagram(s) generated related to 
fragmentation? 
 
Simulate QoS Routing 
Operation of QoS Routing 
Each class of traffic needs a minimum bandwidth path. To avoid oscillations by, QoS routing 
modifies the routing algorithms.  
 
Key idea: Established routes continues to use the previous links till new paths (or links) are 
discovered 
 
Assumptions 
 

 



Decision 
 

 

 
 
Support in INET 

 Basic DiffServ support 
 Current queue modules  

– DropTailQueue,  
– DropTailQoSQueue 
– REDQueue 

 Classifier class: BasicDSCPClassifier 
 classifyByDSCP() creates new packet classifiers 

 
Simulate Routing Updates 
EIGRP 

 Cisco’s EIGRP is a hybrid routing protocol between distance vector and link state routing 
protocols 

 EIGRP offers routing based on composite metric 
  Cisco released EIGRP specs as IETF’s RFC draft in 2013 

 



Basic Operation 
 EIGRP employs Diffusing Update  Algorithm (DUAL) 
 Propagates topology change minimizing path compute time 
 Sends event-driven partial bound updates 

– Weighted (Bandwidth + Delay) 
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EIGRP Simulation Module Structure 

 
 



Simulate HSRP 
Background 

 Allows PC to keep communicating on an internetwork even if its default gateway becomes 
unavailable 

 Works by creating a virtual (phantom) router 
– Virtual router has its own IP and MAC addresses 

 
Hot Standby Router Protocol (HSRP) 

 
 
Basic Operation  

 Each PC is configured to use the virtual router as its default gateway 
 When a PC broadcasts an ARP frame to find its default gateway, the active HSRP router 

responds with virtual router’s MAC address 
 Active router sends out HELLO periodically 
 If the active router goes offline, a standby router takes over 
 HSRP also works for proxy ARP 

 
Automated Main Distribution Frame  Housing Routers 
 

 



Simulate Flooding 
Message Complexity 

 Flooding is a simple routing algorithm in which every incoming packet is sent through every 
outgoing link except the one it arrived on 

 Complexity 
– M = Ω/(N-1) 

 
Displaying no. of packets sent/received 

 No. of messages at each node 
 tictoc14.ned 
 txc14.cc 
 tictoc14.msg 

 

 
 
Simulate TCP with BER 
Reference Topology 

 

 



TCP with BER 
 A cross layer paradox 
 TCP is for congestion control 
 Packet loss due to PHY layer 

– BER 
 TCP wrongly interprets 

– Goes into starvation 
 
Line of Sight effect 

 An object within the line-of-sight between two nodes s and b yields a weaker received signal 
than that of a non obstructed pair s and a at the same distance 

 
Support in Mixim 

 Decider module 
– Classifies incoming messages into receivable messages or noise 
– Calculates the bit errors for the message 
– Info. about current state of channel 

 
PHY Layer Class Graph 
 

 
 
Simulate Priority Queues 
Recall! 

 Designed to provide a relatively simple method of supporting differentiated service classes 
 Cqueue provides FIFO by default 
 Need to be modified for priority queuing 

Operation 
 Packets classified and placed into different priority queues 
 Packets scheduled from the head of a queue only if all queues of higher priority are empty 
 Within each of the priority queues, packets are scheduled in FIFO order 

 
Priority Queuing with Classifier 
 

 



Support in INET 
 

 
 
Member Functions 

 simple PriorityQueue extends Queue 
{   @class(PriorityQueue); 
} 

 void setSchedulingPriority(short p); 
 
DLL Services 
Need 

 The datalink layer is to the link what the transport layer is to the path 
 Upper layer necessitates its behaviour 

― Reliability 
― Flow control 
― Error control 

 Corresponding services must exist 
 
Services Models 

 Services offered 
― Reliable (PPP) 
― Unreliable (Ethernet) 

 Point to point 
 Multiaccess 

 
 
 
Services 

 Framing 
 Link access 
 Error control 
 Contention control 



EDEC Techniques 
Block Diagram 
 

 

 

 
 
Strategy 

 
 
Capabilities of EDEC 
 

 



Constraints 
 All EDEC methods only work below a certain error rate 
 If we allow any no. of errors in data bits and in check bits, then no EDEC method can 

guarantee to work 
– Any valid pattern can transform into any other valid pattern 

 
 
Parity Checks 
Operation 

 Single bit parity detect single bit errors 
― Even 
― Odd 

 
 
 
Limitations 

 Probability of undetected errors in a frame protected by single-bit parity 
― can approach 50 percent 

 Burst errors cause such nondetections 
 
 
Checksumming at DLL 
Overhead of Parity schemes 

 Single bit parity schemes provide little protection 
 To provide enough resilience, redundancy increases linearly 
 Solution: 

― Treat data as k-bit integers 
― Generate k-bit overhead 

 
Operation 

 RFC 1071 addresses Internet checksum algorithm 
 1s complement of all sums of k-bit integers forms the Internet checksum 

― 16-bit for TCP/UDP 
 Carried in the segment header 

 
 
Variants 

 TCP and UDP: checksum computed over all fields 
― Header + data 

 IP: IP header 
 XTP: one checksum is computed over the header and another checksum computed over 

entire packet. 
 
 



DLL vs Transport 
 Transport layer is typically implemented in software 
 Error detection  has to be simple and fast 

― Checksumming 
 DLL implemented in NIC 

― CRC is more robust 
 
Horizontal & Vertical Parity 
2D Generalization 

 d bits in D are divided into i rows and j columns 
 Parity value computed for each row and for column 
 i + j + 1 parity bits comprise DLL frame’s error-detection bits 

– 17 bits for 64 bits 
• ~27% 

 
Two-Dimensional Parity 

 
 
Error Correction 

 A single error is detectable 
– And correctable 

 Even an error in the parity bits themselves is also detectable and correctable 
– Forward error correction (FEC) 

 
Limitations 

 Two-dimensional parity can also detect (but not correct!) any combination of two errors in a 
packet 



 
Cyclic Redundancy Check 
Principle  

 Checksum becomes weak 
― Limited illegal rep 

 CRC more powerful error-detection code 
― Views data bits, D, as a binary number 
― Choose r+1 bit G 
― Goal: choose r CRC bits, R, so <D,R> exactly divisible by G (modulo 2) 

 Receiver knows G,  
 Divides <D,R> by G 
 All zeros 
 No error 
 If non-zero remainder: error detected! 

 
Modulo 2  

 Modulo-2 arithmetic 
 Addition & subtraction are identical 
 Both equivalent to bitwise exclusive-or (XOR) of operands 
 1011 XOR 0101 = 1110 
 1001 XOR 1101 = 0100 

 
Operation  

 D.2r XOR R = nG 
― Left shift by r then append R 
― Multiple of Generator 

 
Mathematical manipulation 

 D.2r = nG XOR R  
 If we divide D.2r by G, want remainder R to satisfy 

 

 
 
D = 101110, d = 6, G = 1001, r =3 

 

 
 
 
 
 
 
 
9 bits transmitted in this case are 101110 011 



Throughput of MAC 
Ideal MAC  

 Broadcast channel of rate R bps 
 When one node wants to transmit, it can send at rate R 

― M nodes transmit 
― Each sends at average rate R/M 

 Fully decentralized 
 No special node to coordinate TXNs 
 No synchronization of clocks 
 No slots 
 Simple 

 
Access Methods  
 

 

 
 
 
Analysis 

 Effective throughout depends upon various factors 
– No. of active users 
– No of resources 
– Channel access methods 
– Traffic volumes 

 Probabilistic in nature 
 
 



 
Channel Partitioning 
Basic Idea 

 Divide channel into smaller “pieces” 
― Time slots 
― Frequency 
― Code 
― Space 

 Exclusive use 
 
TDM 

 Time divion multiplexing 
 Access to channel in "rounds"  
 Each station gets fixed length slot 
 Length = packets trans time) in each round 

– Unused slots go idle  
 
TDM Example 
Example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle 

 Fraction of time slots being used 
– Depends upon the frame size  

 

 
FDM 

 Frequency divion multiplexing 
― Channel spectrum divided into frequency bands 

 Each station assigned fixed frequency band 
― Unused transmission time in frequency bands go idle  

 
FDM Example 
Example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle 

 Fraction of frequency bands being used 
– Depends upon the transmission times of each user 

 

 



Random Access Protocols 
Basic Idea 

 When node has packet to send 
– transmit at full channel data rate R 
– No a priori coordination among nodes 

 Collisions are legal 
– Two or more transmitting nodes cause collision 

 
Packet attempt instants in space and time 

 
Managing Collisions 

 How to detect collisions? 
― Voltage change 

 How to recover from collisions? 
― Wait &  
― Retransmit 

 
ALOHA 
Basic Idea 

 Just say as you like! 
 Whenever and wherever 

― Simplest 
― No synchronization 

 
Packet transmissions are independent 
Packet reception success dependent upon others not transmitting 
 
 

 
 



Probability of Success  
 

 
P(success by given node) = P(node transmits) * P(no other node transmits in [t0-1,t0] * P(no other 
node transmits in [t0-1,t0]  
 

 
 
p . (1-p)N-1 . (1-p)N-1   
= p . (1-p)2(N-1)  
[choosing optimum p and n very large] 
= 1/(2e) = .18  

 

Slotted ALOHA 
Basic Idea 

 Minimize collisions 
– Through synchronization 
– Through frame size delimiting 

Assumption 
 All frames same size 
 Time divided into equal size slots 

― Time to transmit 1 frame 
 Nodes start to transmit only slot beginning 
 Nodes are synchronized 

― If 2 or more nodes transmit in slot, all nodes detect collision 
 
Operation 

 when node obtains fresh frame, transmits in next slot 
― if no collision: node can send new frame in next slot 
― if collision: node retransmits frame in each subsequent slot with prob. p until success 



Performance of Network with 3-Nodes 
 30% success 
 How many collisions? 
 How many empty slots? 

 

 
Pros 

 Single active node can continuously transmit at full rate of channel 
 Highly decentralized: only slots in nodes need to be in sync (master clock) 
 Simple to implement 

 
 
Cons 

 Collisions, wasting slots idle slots 
 Nodes may be not able to detect collision in time 
 Clock synchronization needed 

 
 
Probability of Success  
 

 
 
 
 
 

 N nodes with many frames to send, each transmits in slot with probability p 
 Prob that given node has success in a slot  = p(1-p)N-1 
 Prob that any node has a success = Np(1-p)N-1 

 



 
 

 Max efficiency: find p* that maximizes  
Np(1-p)N-1 

 for many nodes, take limit of Np*(1-p*)N-1 
― N goes to infinity 

 Max efficiency = 1/e = .37 
 
CSMA/CD 
Basic Idea 
Carrier Sensing 

 Listen before transmit 
 If channel sensed idle 

– Transmit entire frame 
 If sensed busy 

– Defer transmission 
Collisions Detection  

– Within short time 
 Colliding transmissions aborted 
 Reduces channel wastage 

 
CSMA/CD States 

 Contention 
 Transmission 
 Idle 

 

 
 
 



Binary (Exp) backoff 
 After mth collision, NIC chooses K at random from {0,1,2, …, 2m-1} 
 NIC waits K·512 bit times, returns to Step 2 

― If idle, start trans 
― If busy wait until idle, then transmits 

 Longer backoff interval with more collisions 
 
 
CSMA/CD Efficiency 
Factors Affecting (1 of 2) 

 Tprop = max prop delay between 2 nodes in LAN 
 ttrans = time to transmit max-size frames 
 Full load 

– Worst 
 Partial load 

– Increases till a range 
 No load 

– Poor performance 
 Efficiency goes to 1 
 As tprop goes to 0 
 As ttrans goes to infinity 
 Efficiency goes to 0 vice versa 

 
 

transprop /tt+
=Efficiency

51

1

 
 
Performance with Variants  
 
 
 

 
 
 
 



Min Frame Size Computation 
Min Frame Size 

 Ethernet recommends 64 Bytes 
– Inclusive of headers 

 If the data portion of a frame < 46 bytes 
 Pad field is used to fill out the frame to min. size 
 Wireless networks necessitate lesser size 

– ReTx cost to be minimized 
 Optical networks require longer frames 

 
Reasons  

 Data field of 0 bytes is sometimes useful 
– When a transceiver detects a collision, it truncates the current frame 

 Stray bits and pieces of frames appear on the cable all the time 
 To distinguish valid frames from garbage 
 Collision detection can take as long as 2 τ 

 
 

Reasons  
 Prevent a station from completing the transmission of a short frame before the first bit has 

even reached the far end of the cable 
– where it may collide with another frame 

 
Ethernet Calculation 

 10-Mbps LAN 
 Max length = 2500 m (four repeaters: 802.3 specs) 
 RTT = 50 μsec in the worst case 

― Therefore, the minimum frame must take at least this long to transmit 
 At 10 Mbps, a bit takes 100 nsec 

― 500 bits is the smallest frame that is guaranteed to work 
 To add some margin of safety, round up to 512 bits or 64 bytes 

 
 
Max Frame Size Computation 
Background 

 Ethernet recommends 1500 bytes as Max 
 This limit was chosen arbitrarily for DIX standard 
 Transceiver needs enough RAM to hold an entire frame 

– More expensive transceivers 



Factors  
 Overhead 
 Pipelining 
 Transmission errors 

 
Overhead of Variable Length Packet  

 Each frame contains V as overhead bits 
 Kmax:Max length of packet 
 Message of length M 

– Broken down into M/Kmax packets 
 

 
Overhead of Variable Length Packet (2 of 2) 

 As Kmax decreases, the number of frames increases  
– Thus the total overhead in the message 

 Processing load in a multiple hop network increases 
 
Pipelining 

 Split the message into smaller packets 
– While the later packets arrive on the input queue of the node 
– Former packets are leaving or may have already left the output queue 

 
Pipelining Scenario 

 Decreasing delay by shortening packets to take advantage of pipelining 

 

 
 
 



Pipelining Scenario 
 The total packet delay over two empty links equals twice the packet transmission time on a 

link plus the overall propagation delay 
 

 
 
Pipelining Scenario 

 When each packet is split in two, a pipe lining effect occurs 
 The total delay for the two half packets equals 1.5 times the original packet transmission 

time on a link plus the overall propagation delay 
 

 
 
Tradeoff between Overhead & Pipelining 

 As the overhead V increases, Kmax should be increased 
 As the path length j increases, Kmax should be reduced 

 
 
Transmission Errors 

 Large frames have a somewhat higher error probability than small frames 
 Probability of error on reasonable-sized 
 frames is on the order of 10-4 or less 

– This effect is typically less important than the other effects 
 
 
 
Fixed Frame Size Computation 
Why Fixed Frame? 

 Expectability of performance 
– Latency 
– Throughput 
– Cell loss 

 Resource pre-emption 
 
 



Considerations  
 How much should be the fixed size? 

– Processing at the nodes 
 Header to payload efficiency 

– Padding requirement 
 Applications (Voice/video) 

– Achieve a small delay for stream-type traffic 
 Assume an arrival rate of R and a packet length K 

– First bit in a packet is then held up for a time K/R 
– Waiting for the packet to be assembled 

 
Fixed Frame (cell) networks 

 ATM recommends 53 bytes (424 bits) as Max 
– 48 bytes payload 
– 5 bytes header 

 Emulates circuit-like behaviour 
– Good for interactive 
– Bad for file transfer 

 
Multi-Protocol Label Switching 
Intro  

 Multi Protocol Label Switching (MPLS) 
– Fast packet  switching  & routing 
– Provides designation, routing,  & switching  of  traffic  flows  through  MPLS 

domain 
 All packets labelled   before being forwarded  
 Network  layer  header  not  processed 
 Although  idea  was to facilitate fast packet switching 
 Main goal: support  traffic  engineering  and  QoS 

 
 
 

Basic Idea 
 Route once and switch many times 
 Set of packets that have the same traffic characteristics are forwarded in the same manner 

– Along the route that starts from an ingress node and ends at an egress node of an 
MPLS network 

 
 
 



MPLS Network Components 
 

 
 
MPLS Enhanced Forwarding 
 

 
Important Parameters 

 Link utilization 
 Voice jitter 
 End to end delay 
 Traffic Received when FRR vs link failures 

 
 
Load Balancing in Data Centre 
Intro  

 Google, Microsoft, Facebook, and Amazon have built massive data centers 
 Each houses tens to hundreds of thousands of hosts 
 Concurrently support many distinct cloud applications 
 Search, email, social networking, and e-commerce 
 Top of Rack (TOR) switch interconnects the hosts in the rack 
 With each other 
 With other switches in the data center 
 Form a data centre network 



Basic Idea 
 Each application is associated with a publicly visible IP address 
 Clients send their requests and receive responses 
 Inside, external requests first directed to load balancer 
 Distributes and balances requests to hosts 

– Also called L4 switch (with NAT) 
 

Problems in Hierarchical Topology 
 

 
Limited Host to Host Connectivity (1 of 2) 

 40 simultaneous flows between 40 pairs of hosts in different racks 
– 10 hosts in rack 1 sends a flow to a corresponding host in rack 5 
– 10 flows between pairs of hosts in racks 2 and 6, 3 and 7, and 4 and 8 

 40 flows crossing the 10 Gbps A-to-B link (and B-to-C link) each only receive 10 Gbps / 40 
= 250 Mbps 

 
Solution: Fully Connected Topology 
 

 
 
 
 



Correctness of Stop and Wait 
Stop and Wait Operation 

 Client sends request 
– Waits for response 

 Server sends response 
– Waits for ack 

 Step-locked communication 
 Most web and other servers based upon it 

– Pipelining is deviation 
 
Problems with Unnumbered Packets 
 

 
 
Problems with Unnumbered ACKs 
 

 
Problems Management using Seq. Nos. 
 

 
 



Efficiency of Go Back N 
Stop and Wait Operation 

 Client sends request 
– Waits for response 

 Sends next request 
 Each request travels all along the way to server 
 Response travels backwards 

 
Efficiency of Stop & Wait Operation  

 
 

 
 8000 bit packet 
 If RTT=30 msec, 1KB pkt every 30 msec 33kB/sec throughput over 1 Gbps link 

 
Utilization of Go-Back N under No Loss 

 

 
 



 

U 
sender = 

.0024 

30.008 
= 0.00081  

3L / R 

RTT + L / R 
= 

 
Limitations of Go Back N 

 Retransmissions, or delays waiting for time outs, occur in go back N due to following  
 Errors in the forward direction 
 Errors in the feedback direction 
 Longer frames in the feedback than in the forward directions 

 
Effect of Long Frames in Reverse Direction 

 Ack for packet 1 does not arrive at the sending side by the time packet 6 finishes 
transmission, thereby causing a retransmission of packet 0 

 Probability that a frame is not acked by the time the window is exhausted is given by 
 

 
Character-based Framing 
Character Codes 

 Character codes such as ASCII provide binary representations 
– Keyboard characters and terminal control characters 
– Also for various communication control characters 

 
SYN Idle 

 A string of SYN characters provides idle fill between frames when a sending DLC has no 
data to send 

– But a synchronous modem requires bits 
 
STX and ETX 

 STX (start of text) and ETX (end of text) are two other communication control characters 
– Used to indicate the beginning and end of a frame 

 
Simplified Frame Structure 

 
 



Problem 
 The header or the CRC might (through chance) contain a communication control character 

– Since these always appear in known positions after STX or ETX, (no problem for the 
receiver) 

 The payload might contain ETX character 
– Interpreted as ending the frame 

 
Transparent Mode 

 The transparent mode uses a special control character called DLE (data link escape) 
― Inserted before the STX character to indicate the start of a frame in transparent mode 
― Also inserted before intentional uses of communication control characters within 

such frame 
 

 
Bit-oriented Framing 
Bit-oriented Protocols 

 Bit-oriented synchronous protocol pass variable-length frames 
– Image/voice data 
– Web data 

 Dedicated or switched Simplex, half and full duplex 
 
Flags  

 8-bit sequence (01111110) that delimits a frame's 
– Start and End 

 Procedure 
– When DLL detects seq of 5 1s in a row in user data 
– Inserts a 0 immediately after the 5th 1 in transmitted stream 

 DLL at receiver removes inserted 0s by looking for seq of 5 1s followed by stuffed 0s 

 Problem 
 Confusion between possible appearances of the flag as a bit string within frame and actual 

flag indicating end of the frame 
 
Bit-Stuffing Example 

 The frame after stuffing never contains more than five consecutive 1's 
― Hence flag at the end of the frame is uniquely recognizable 

 

 



Framing with Errors 
Problems with framing 

 Several peculiar problems arise 
 When errors corrupt the framing information on the communication link 

– Flagging 
– CRC 
– Length field 

 
Flags  

 If an error occurs in flag at end of a frame 
– The receiver will not detect the end of frame 
– Does not check the cyclic redundancy check (CRC) 

 When next flag detected, receiver assumes CRC to be in position preceding flag 
 This perceived CRC might be the actual CRC for the following frame  
 But the receiver interprets two frames as one 
 Receiver fails to detect the errors with a probability 2-L 
 L is the length of the CRC 

 
False Flag Example 
Bits before the perceived flag are interpreted by the receiver as a CRC 

– Accepting a false frame 

–  
 Called the data sensitivity problem of DLC 

– Even though the CRC is capable of detecting any combination of three or fewer 
errors 

– A single error that creates or destroys a flag plus a special combination of data bits to 
satisfy the perceived preceding CRC, causes an undetectable error 

 
Length Fields 
Purpose of Length Field 

 Basic problem in framing is to inform the receiving DLC where each idle fill string ends 
– Where each frame starts 
– Where each frame ends 

 Include length field in the frame header 
 
Overhead of Length Field 

 If the length is represented by ordinary binary numbers 
 No. of bits in the length field has to be at least 
 L = log2[Kmax+1] 

– Kmax is the maximum frame size 
 
Problems with Length Fields 

 An error in this length field causes receiver to look for the CRC in the wrong place 
– An incorrect frame is accepted with probability 2-L 
– L is the length of the Length field 

 Receiver does not know where to look for subsequent frames 
 
 



Partial Solution-1 
 DECNET uses a fixed-length header for each frame 

– Places length of frame in header 
– Header has its own CRC 

 Limitation: transmitter must still resync after such an error 
 Receiver will not know when next frame starts 

 
Partial Solution-2 

 A similar approach is to put the length field of one frame into the trailer of preceding frame 
– Avoids inefficiency of the DECNET approach 
– Requires special synchronizing seq after each detected error 

 
Topology and Connectivity 
Topology 

 Physical connectivity 
– Star 
– Hub 
– Mesh 
– Bus 
– Tree 

 Connectivity is implied 
 Wireless networks have constrained 

– Topology 
– Connectivity 

 
Ad hoc Networks 

 No infrastructure 
 Nodes themselves 

– Transmit 
– Receive 
– Relay (forward) 

 An operational area in which nodes randomly placed 
 Locations follow a spatial distribution 
 Must communicate with neighbors 

– Certain power  
 
Spatial Reuse vs Connectivity 

 The transmission range in the network is large 
― At a time at most one transmission occurs 

 With smaller transmission ranges, many transmissions can occur simultaneously 
― Spatial reuse 
― Multihop 

 



Feasibility Region 
 x1: location of the first node 
 x2: location of second node 
 Nodes distributed uniformly in [0, z] 

x1 ≤ x2 

 

 

 
 
 
 
 
 Two-node network 

connected if x2 − x1 ≤ r 
 Transmission range of 

every node: r(n) , 
where n is the number 
of nodes in network 

 

 
Link Scheduling & Capacity 
Hidden Terminal Problem 

 Wireless nodes are blind 
 Carrier sensing is hard 
 Collision detection is harder 

 
Link Scheduling 

 MACA 
 MACAW 

 



Network Capacity 
 Sum of all active connections 

― Simultaneous 
― Non interfering 

 Varies with time 
 Protocol design determines the effectiveness 

 
Scheduling Constraints 
Underlying Assumptions 

 Multihop wireless network 
 Topology has already been discovered 
 Directed graph G(N , E) 

― N is the set of nodes  
― E is the set of directed edges 

 An edge (i, j) ∈ E  
 Transmission from i , addressed to j 
 Decoded by j, provided that the SIR at j is adequately high 

 
Constraints 

 The edges can be grouped into subsets 
― Edges in a subset can be activated in the same slot 
― Receiver in each edge can decode the transmission from the tail (TX) node of the 

edge 
 Slotted time 
 When such a set, S is activated one packet can be sent across each edge in S 

 
Independent Sets 

 S1 = {(1, 2), (5, 6), (3, 4)} 
 S2 ={(2, 3), (1, 5)} 
 S3 = {(2, 3), (4, 5), (1, 6)} 

 

 
 
 



Centralized Scheduling 
Scheduling Problem 

 Schedule specifies a seq of independent sets to be activated 
 Static link activation schedule 
 Allocates MS slots to independent set S 
 BW allocation follows 

 
Maximum Schedulable Region 

 Set of all such flow rates λ by L 
– Flow on each link be less than the average link capacity under the schedule 

 
 
Bluetooth Example 

 Piconet is a centralized TDM system 
 Master controls the clock 
 Determining which device gets to communicate in which time slot 

 
 
Marginal Buffering at Every Hop 
Definition 

 Multiplexer has no buffer to store data arriving in a slot but cannot be served in that slot 
 Performance depends only on marginal distribution of arrival process 
 Doesn't depend on correlations b/w arrivals in slots 

 
Simple Analogy 

 The basic idea of “bufferless” multiplexing/routing is 
– Always forward a packet to an output  port regardless of success 

 
Multiplexer Network Scenario 
 

 Traffic flow from location 1 to locations 
2 and 3 

 And from location 2 to location 3 
– Old and new traffic 

causes superposition 
 

 



Comments 
 Packet switching is unachievable with zero buffering 
 At least the header of a packet needs buffer 

– Cut through 
 Mostly store-and-forward switching 

– An arriving packet entirely copied into switch from input to output links 
 
Arbitrary Buffering at Every Hop 
Arbitrary Buffering 

 Connection admission control with burst scale buffering 
 Leaky bucket shaped sources and QoS requirements 

 
Buffering constraints 

 An arriving stream connection may or may not be admitted, if traffic is already being carried 
by the link 

 Problem is exacerbated for multihop links 
 
Scenario for Arbitrary Buffering 
 

 

 
 Voice at loc 1 destined 

for loc 2 enters network 
at router 1 & leaves at 
router 2 

 Voice at loc 1 destined 
for loc 3 leaves the link 
from router 1 to router 2 
and enters the link from 
router 2 to router 3 

 Here two-hop traffic 
multiplexed with data 
from loc 2 to loc 3 

 

 
Comments 

 Traffic from a source may be well characterized at the point where it enters the network 
 After multiplexing at the first hop, the flows become dependent 

– This dependence is very difficult to characterize 
 
Problem Set 1 
Effect of BER on Channel Performance 
Suppose that an 11-Mbps 802.11b LAN is transmitting 64-byte frames back-to-back over a radio 
channel with a bit error rate of 10-7 . How many frames per second will be damaged on average? 
 



Ethernet Framing 
A 1-km-long, 10-Mbps CSMA/CD LAN (not 802.3) has a propagation speed of 200 m/μsec. 
Repeaters are not allowed in this system. Data frames are 256 bits long, including 32 bits of header, 
checksum, and other overhead. The first bit slot after a successful transmission is reserved for the 
receiver to capture the channel in order to send a 32-bit acknowledgement frame. What is the 
effective data rate, excluding overhead, assuming that there are no collisions? 
 
CSMA/CD Backoff Algo Performance 
Two CSMA/CD stations are each trying to transmit long (multiframe) files. After each frame is 
sent, they contend for the channel, using the binary exponential backoff algorithm. What is the 
probability that the contention ends on round k, and what is the mean number of rounds per 
contention period? 
 
Problem Set 1 
Operation of MAC Addressing 
Suppose nodes A, B, and C each attach to the same broadcast LAN (through their adapters). If A 
sends thousands of IP datagrams to B with each encapsulating frame addressed to the MAC address 
of B, will C’s adapter process these frames? If so, will C’s adapter pass the IP datagrams in these 
frames to the network layer C? How would your answers change if A sends frames with the MAC 
broadcast address? 
 
Performance of ALOHA  
Suppose four active nodes—nodes A, B, C and D—are competing for access to a channel using 
slotted ALOHA. Assume each node has an infinite number of packets to send. Each node attempts 
to transmit in each slot with probability p. The first slot is numbered slot 1, the second slot is 
numbered slot 2, and so on. 
a. What is the probability that node A succeeds for the first time in slot 5?  
b. What is the probability that some node (either A, B, C or D) succeeds in slot 4? 
c. What is the probability that the first success occurs in slot 3? 
d. What is the efficiency of this four-node system? 
 
 
Switch Learn-ability 
Consider a network in which 6 nodes labeled A through F are star connected into an Ethernet 
switch. Suppose that (i) B sends a frame to E, (ii) E replies with a frame to B, (iii) A sends a frame 
to B, (iv) B replies with a frame to A. The switch table is initially empty. Show the state of the 
switch table before and after each of these events. For each of these events, identify the link(s) on 
which the transmitted frame will be forwarded, and briefly justify your answers. 
 
 
Simulate Parity Scheme Failure 
Support in INET (Channel Behaviour) 

 BER & PER allow basic error modelling 
 When channel decides (based on RN) that an error occurred during transmission of packet 
 Sets an error flag in the packet object 

 
Support in INET (Rx Behaviour) 

  The receiver module is expected to check the flag 
 Discard the packet as corrupted if it is set 

– Default BER and PER are zero 
 
 



Typical Example 
•  channel Ethernet100 extends ned.DatarateChannel 

{ 
 datarate = 100Mbps; 
 delay = 100us; 
ber = 1e-10; 
} 
 
Failing Parity Scheme 

  Need to hardcode the pattern that fails parity scheme 
 The data pattern must be known 

– So that a corresponding error model can be designed 
 
 
Simulate ARP Behaviour 
Scenario 

 Client computer opens TCP session with server 
 Rest of operations (including ARP) follow 

– ARP has to learn the MAC address for the default router 
 

 
 
Design Tour of INET 3 
arpTest.client.eth[0].arp 
 

 



Inside ARP Packet 
 

 
 
 
ARP Packet Class (Generated by .msg file) 
// file: ARPPacket.msg 
message ARPPacket 
{ 
fields: 
 int opcode enum(ARPOpcode); 
 MACAddress srcMACAddress; 
 MACAddress destMACAddress; 
 IPAddress srcIPAddress; 
 IPAddress destIPAddress; 
}; 

 
 
 

 

Packet Queue (Contains IP Packet) 
 
 

 



ARP Cache Build-up 
 

 
 
ARP Variants 

  ARP Broadcast-unicast behaviour 
 Proxy ARP 
 Gratuitous ARP 
 Reverse ARP 

 
Performance 

  No of broadcast attempts 
 No of successes 
 Effect of network size 
 Multihop performance 

 
Output Analysis on WireShark 
Wireshark 

 A packet capturing & analysis tool 
― Work in promiscuous mode 

 Presents output in Binary, Hex and ASCII 
 Saves files as .pcap 

 
Packet Capture Process 

 



Wireshark Interface 
 

 
 
Example 
inet/examples/inet/tcpsack 

 Sets up a flow between two hosts with TCP Sack 
 Outputs files in multiple formats,  
 Including the pcap format 

 
Simulate Switching vs Routing 
Why compare! 

 Routing is inter-network phenomenon 
― It is pre-forwarding 

 Switching is intra-network 
― It is forwarding 

 Apparently no comparison 
 Comparison at the device level 

― Router vs switch 
 
Router vs Switch 

 Routing process 
― Forwarding process 

 Switching process 
― Port-based MAC learning 

 ID-based behaviour 
― Unicast 
― Broadcast 

 



Basis of Comparison 
 Cost 

― All router 
― All switch 
― Hybrid 

 Isolation 
― Traffic 
― Domain 

 Speed 
 Complexity 

 
Parameters 

 Output queue lengths 
 Output queue length distribution 
 Output queue length Vs time plots 
 Number of packets generated and received by hosts 
 Packet size distribution 
 Hop count distribution  
 End to end delay 

 
A Router (or Switch) Package 
 

 
 
 
 
Overview of Access Technologies 
Broadband Access 

 Broadband is longhaul (backhaul)  
– Shared medium 
– Long distance 

 Vs access side (baseband) 
 Lastmile (first mile) 

– User-connecting technologies 
 
 
 



Taxonomy of Packet Technologies 
 

 
 
 
 
Taxonomy of Wireless Technologies 
 

 



 
WiFi 
WLAN Protocol Stack 

 
 
The Hidden (Exposed) Station Problem 

 
 



RTS CTS Mechanism 
 Sender sends request to send 
 Receiver acknowledges as clear 

– Overhearing neighborhood cautioned 
 
 
WLAN Configuration 
 

 
 
WiFi Operations 
Operations 

 Synchronization 
 Authentication 
 Association 
 Data Transmission 
 Handoff 
 Power management 

 
Scanning for APs  
 

 

 



 

 

 

 
 
 
Mobility in the Same IP Subnet 

 H1 moves from BSS1 to BSS2 
 Keeps its IP address 

― And all of its ongoing TCP connections 
 

 
 
Mobile IP 
Degrees of Mobility 
 

 



Mobile IP Standard 
 RFC 3344 
 Elements 

― Home agents,  
― Foreign agents,  

 Foreign-agent registration 
 Care-of-addresses 
 Encapsulation (packet-within-a-packet) 

 
Elements of Mobile IP System 
 

 
 
Procedures 

 Agent discovery 
 Registration with home agent 
 Indirect routing of datagrams 

 
Indirect Routing 
 

 



Packet Cable Networks 
Background 

 Packet broadband cable network 
― Built on existing broadcast cable TV (CATV) networks 

 Hybrid fiber coax (HFC) cable networks 
― Deployment of optical fiber 
― New amplifier technology 

 Alternative to DSL 
 
Architecture 

 Tree topology 
 One-way broadcast 
 Headend and cable modems 

 
Headend 

 Operational center of a CATV cable access network 
 Connected to many distribution nodes via trunk cables 

― Coax cable or fiber 
 
Components 
 

 
Functions of Headend 

 Receiving broadcast signals from satellite or microwave dishes 
 Mixing local or recorded TV programming 
 Assigning channel frequencies to all signals destined for cable distribution 

 
Functions of CMTS 

 Controlling bandwidth allocation for data traffic to each modem 
 Enforcing bandwidth allocation policy 
 Assigning a time slot to each cable modem for transmitting upstream messages 
 Enforcing QoS policies such as traffic shaping and policing (packet classification based on 

QoS classes) 



Cable Modem Network Configuration 
 Cable Model Systems accommodates two way communication 
 DOCSIS (data over cable service interface specification) 

 

 
WiMax 
Background 

 IEEE 802.16 is an emerging wireless MAN technology 
 Originally designed to provide wireless last mile/first mile deployment in a MAN 
 Also end-user access an alternative to 802.11 family 
 Mobility support provided  

 
Introduction 

 Worldwide Interoperability for Microwave Access (WiMAX) 
 Many basic ideas of 802.16 borrowed from DOCSIS/HFC applied to the wireless setting 
 Good analogy : Wi-Fi : Ethernet :: WiMAX : DOCSIS/HFC 

 
Architecture 

 Line-of-Sight(LOS) and tens of Ghz spectrum 
 Severe atmospheric attenuation 

– Suitable in operator network between two nodes with high bandwidth 
Many base stations  deployed at elevated positions 
 
Components 
 

 



Digital Subscriber Line 
Background 

 A family of technologies for broadband last-mile solution using existing copper wires 
 
Introduction 

 Based on two premises 
– Discrete multitone (DMT) line code 
– Widely deployed twisted pair 

 Provides upto 7 Mbps (suitable for Internet) 
 Flexible bandwidth allocation per user demand 
 Dedicated vs CATV 

 
Architecture 

 Enterprise CPE includes an integrated access device (IAD) 
 Or connected through Feeder Distribution Interface 

 

 
DSL Family 
 

 
 

 
 
 

Wireless Personal Area Networks 
Introduction to LR-WPANs 

 Low-rate low-power wireless personal area networks 
– Types of wireless sensor networks 

 Applications 
– Industrial control & monitoring 



– Environmental & health monitorinG 
 Home automation, entertainment & toys 
 Security, location and asset tracking 
 Emergency and disaster response 
 
Comparison 
 IEEE 802.15.4 

– A new MAC for LR-WPAN 
 IEEE 802.11: an “overkill technology” 
 Bluetooth: High data rate for multimedia applications 
 Small size network 
 High power consumption 
 

ZigBee vs Bluetooth  
 Smaller packets over large network 
 Mostly Static networks with many, infrequently used devices 
 Larger packets over small network 
 Ad-hoc networks 

 
 

 
 

IEEE802.15.4 
Features  

 Channels 
– 16 channels in 2450 MHz band 
– 10 channels in 915 MHz 
– 1 channel in 868 MHz 

 Over-the-air rates of 250,40& 20 kb/s 
 Addressing 
 16 bit short 
 64 bit extended 



 Allocation of guaranteed time slots (GTSs) 
 CSMA-CA channel access 
 Fully acknowledged data transfer 
 Low power consumption 
 Energy detection (ED) 

Link quality indication (LQI) 
 
Topology Models 

 

 
 

 
 
 
 
 
 



Radio Frequency Identification 
Introduction 

 Presence known if within a certain radius 
― Object identified 

 Do not know exactly the position 
 
Application Areas 
 
 

  

Architecture 

 
Traffic Flow 
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