

Booklet of Network Modeling and Simulation

CONTENT
Course code CS432
Credits 3+0

Instructor

Dr. Ali Hammad Akbar

Lecturing style

Video lectures of short

duration (5-7 minutes)

Evaluation

Quizzes

Assignment

Simulation modules

Mid-term and final

The complex world of networks
Networks are many and diverse. Can we simplify it? Or at least the discussion of it?

Need for NeMS
Let us explore the need and motivation to perform Network Modeling and Simulation (NeMS) by
looking at the technology landscape. The landscape consists of the people, technology and their
relationships.

Technology Landscape

1. Communications systems: Evolving rapidly
2. User demands: High performance networks
3. Service providers: Rapidly expanding their network infrastructure

Network researchers face the protocol war by developing new communications techniques,
architectures and capabilities. Equipment vendors are releasing new devices with increasing
capability and complexity. Technology developers and OEMs are developing NG equipment.
Network designers and developers are working on how to satisfy the QoS demands of users amidst
emerging technologies and techniques viz a viz legacy counterparts? Network Engineer in
operations is thinking about what is the right approach to solving problems? Do I buy latest device
from company X that claims to solve all my problems? Do I replace underlying technology of my
system with the latest generation? Next Generation Network Architect wonders how do I know how
this new approach will interact with already existing protocols? How do I build confidence in the
utility of this approach without producing and deploying the technology? Is there one solution?
Actually not! There are various ways to answer and satisfy the goal seekers. These include

 Prototyping & empirical testing
 Trial field deployment
 Modeling and Simulation (M & S)
 Analysis

The order represents decreasing costs but increasing abstraction. It is upto the network engineer to
trade them off.

What is NeMS?
Network Modeling and Simulation is often considered a single term. In reality, it is not! Simulation
is the imitation of behaviour of real-world system or Computational re-enactment according to rules
described in model. Whereas modeling is a step that precedes simulations. Together they form an
iterative process approximating the real world systems. Model is the logical representation of a
complex entity, system, phenomena or a process. In communications, network model could be
analytical representation, mathematical form as a state Machine or closed or approximate form.
Computer simulation is the execution of computer software that reproduces behavior with a certain
degree of accuracy to provide visual insight. It is basically a template on which a computer program
runs. It has

 Inputs
 Outputs
 Behaviour

Formally, simulations are pieces of computer software that implement algorithms, take inputs and
give outputs.

The model definition could be

 Descriptive
 Analytical
 Mathematical
 Algorithmic

The computer models can be described into various types

 Stochastic vs Deterministic
 Continuous vs discrete
 Steady state vs Dynamic
 Local or Distributed
 Linear or nonlinear
 Open or closed

These models must be applied according to the perspective. It is important to Model only what you
understand. Likewise, understanding your model is equally necessary. Model what you need & no
more so that it is neither underdefined nor overdefined.

Simulation Building Process
Consider a one hop communication scenario between two wireless notebooks connected through a
WiFi AP. The simulation entities would include wireless computers and their packets (multiple
instances), WiFi AP (single instance), and a traffic generator (single instance) that creates wireless
computers and their packets. The states of the system would include WiFi AP (idle or busy). Each
computer generates a number of packets with each packet successful/failed. The events would
include wireless computer creation, packet generation, wireless AP activity. Queues would be
needed to schedule the events. These would contain frames waiting in output queue of wireless
computer and frames (packets) at WiFi AP input queue. To make the simulation exciting, dynamic
and insightful, randomization has to be performed. These would include random realizations of
packet lengths, no. of frames per wireless computer, no. of wireless computers, BER (and PER) and
packet drop ratio in WiFi AP input queue. It is further needed to distribute various entities and
events. The distributions could include Uniform and Gaussian etc for packet lengths and no. of
frames per wireless computer.

How Does The Simulation Run?
Following steps are executed during the running of the simulation.

 Inputs created/initialized
 Events of transmission, reception and noise occur
 Randomness causes queues to behave and err
 Packet successes/failures
 Simulation logs are compiled and presented as the output in desirable formats

Components of a simulator

 A self-contained program
 Event queue
 Simulation clock
 State variables
 Event routines
 Input routine
 Report generation routine
 Initialization routine
 Main program

Types of simulations

 Monte Carlo simulation
 Trace driven
 Discrete events
 Continuous events

When to simulate

 Analytical model not feasible (complex)
 Analytical model not possible (too simple)
 Simulate to verify analysis
 Otherwise simulations are unnecessary

When not to simulate

 Analytical model gives good enough representation
 Simulation takes months
 Simulation is expensive
 Simulation is non-scalable

General mistakes
 Inappropriate levels of details
 Improper selection of programming language
 Unverified models
 Improper initial conditions
 Short run times
 Poor random number generators
 Inadequate time estimate
 No achievable goals
 Incomplete mix of essential skills
 Inadequate level of user participation
 Inability to manage simulation project

Inappropriate levels of details

 Include what is relevant
 Too fine simulations computationally heavy

 Many interdependent parameters
 Difficult to assess their interplay

 Tip: Necessity & sufficiency

Improper programming language

 Scope & type of simulation determine best choice
 Object oriented vs. procedural

– Types/diversity of simulation parameters
 Interpreted vs. compiled

– Machine dependence
– Speed
–

Unverified models
 Programming is non trivial
 Semantic mistakes
 make simulations get
 Wrong results
 Misleading results
 Modular verification a must

Improper initial conditions

 Initial condition not steady state
 Often a late realization
 Surprisingly wrong results
 May never converge

Short run times

 Strong dependence on Initial conditions
 Don't achieve true
 steady state

Poor random number generators

 Lacking pseudo-random sequence leads to predictability
 Wrong choice of seed value could cause inadvertent correlation between processes

– Use celebrated RNGs

Inadequate time estimate

 Models overstate the simulations
– Implementations get delayed

 Software development life cycle must assess model complexity

No achievable goals

 Goals not defined
– Tangible output analysis
– Logs and trace files

 Goals are unreal
– Affects simulation complexity and implementation

Incomplete mix of essential skills

 Domain knowledge
 Statistics
 Programming
 Project management
 Past experience

Inadequate level of user participation

 From modeling to implementation
 UI design
 Output analysis

Inability to manage simulation project

 Simulations are not monolithic
 Need software engineering tools

– Multivariate design
– Code management
– Track changes

Simulation inaccuracies
 Over reliance on link budget methods for abstraction
 Overly simplistic modeling of radio layers

Over reliance on link budget methods for abstraction

 Link budget losses overly static
– Fair enough for steady state analysis
– Dynamic analysis not possible

 Results are misleading

Overly simplistic modeling of radio layers

 Lowest layer often ignored
– No bit level BER & delay

 Often the Achilles heel
 Wrong results in highly dynamic use cases

Development of Systems Simulation

A “Still I am not dead yet!” scenario

Available Not available
h = height (feet) Mass of object
t = time in motion (seconds) Air resistance
v = initial velocity (feet per second, + is up) Location of object
s = initial height (feet)
a = acceleration (feet per second per second)

 /* Height of an object moving under gravity. */

/* Initial height s and velocity v constants. */
main()

{
 float h, v = 100.0, s = 1000.0;

 int t;

Development Process

 Problem formulation
 Data collection & analysis
 Simulation development
 Model validation, verification, & calibration
 “What-if” analysis
 Sensitivity estimation

Problem formulation

 Identify controllable and uncontrollable inputs

Data collection & analysis

 What to collect
 How much to collect
 Cost and accuracy trade off

Simulation development

 Codify, codify and codify!

Model validation, verification, & calibration

 Validation
 Is it the right system?
 Emulates real phenomenon

Model validation, verification, & calibration

 Verification
 Are we building the system right?
 Implementation must correspond to the model

Model validation, verification, & calibration

 Calibration
 Parameter estimation
 Tweaking/tuning to ensure that simulated data follows real data

“What-if” analysis

 Performance measures with different inputs

Sensitivity analysis

 Relative importance of different parameters with respect to output
 Even with respect to each other

Life cycle of Simulation Development

Recommended Text and References

NeMS contents cover

 Well known mathematical models, equations and forms
 Widely used simulation tools and code reusability
 Their inter-relationship

 NeMS contents don't cover

 Mathematical derivations from scratch
 Programming dexterity

Uptill now
Basics of NeMS

 Mohsen Guizani et al, “Network Modeling and Simulation” John Wiley , 2010.

Basics of NeMS
 Jack Burbank et al, “An Introduction to Network Modeling & Simulation for the Practicing

Engineer” John Wiley , 2011.

Basics of NeMS

 John A. Sokolowski & Catherine M. Banks, “Modeling and Simulation Fundamentals” John
Wiley , 2010.

Next Roadmap

 TicToc tutorial

 OMNET++ Manual
 Website: https://omnetpp.org
 INET Framework for OMNeT++
 OMNET++ Wiki
 Mixim Sourceforge Page

Introduction to OMNET++
What is OMNET++

 Objective Modular Network Testbed in C++
– Simulation kernel
– Component-based simulation library

 A framework, not a simulator
 Designed to create & simulate any network

Simulation Kernel

Getting a free copy

 www.omnetpp.org
 Download the latest release (4.6 in our case)

 “Omnetpp-4.6-src-windows.zip”
 Complete folder

– C++ compiler
– CMD line build environment

 Download source code

Compile & Install

http://www.omnetpp.org/

 Compiling and installing on Windows self-contained
 Enter OMNeT++ folder that you unzipped
 Run the file called Mingwenv.cmd

Compile & Install

 When terminal appears, enter the commands
 /.configure

 Make

Debug mode

 Does not optimize the binary it produces
 Source code and generated instructions relationship is complex
 Allows accurate breakpoints setting
 Allows code step-through one line at a time
 Compiled with full symbolic debug information

Release mode

 Enables optimizations
 Generates instructions without any debug data
 Lots of code could be completely removed or rewritten
 Resulting executable may not match with written code

Running first time

 OMNeT++ comes with an Eclipse-based Simulation IDE
 Type omnetpp

Minimum GNU environment for Windows
Compilers provide access to functionality
Of Microsoft C runtime and some
Language-specific runtimes

Build process produces
Debug and release

Binaries

Debug is elaborate
But slow

Release is optimized
& fast

Select the default workspace

 A workspace is a logical collection of projects
 A workspace called p2p may contain only peer to peer applications

Design of OMNET++

Model Structure

 Model consists of modules
 Modules communicate with message passing
 Modules are C++ files

– Implement simulation class library
– Run in simulation kernel

 Module types
– Simple (active modules)
– Compound

 Simple modules can be grouped into compound modules and so forth
 Modules communicate through gates (connections)

– Directly between modules or through intermediaries

No. of hierarchy levels not limited

 Gates
– Gates
– Input output interfaces of modules
– Allow message passing
– Linked via connection (TPROP, RDATA, BER) Input output interfacing

1. Define
Module
Types

2. Instantiate
them 3. Network implements system model

 Channels
– Connection types with specific properties
– Reusable at several places
– Standard Host talking to another Standard Host via an Ethernet cable

 Message; tuple (time stamp, arbitrary data, ...)
 Network; A compound module with no external gates

Module Parameters

 Pass configuration data to simple modules
 Define model topology
 String, numeric, boolean
 Constants, random numbers
 Expressions as references

Internal architecture of OMNET++

OMNeT++ simulation programs possess a modular structure.

Model Component Library

 Consists of the code of compiled simple and compound modules

Simulation Kernel & SIM Class Library

 Modules are instantiated and concrete simulation model is built by simulation kernel
 SIM covers most of the common simulation tasks through classes

– Generate random number (distributions)
– Queues (F IFO, priority)

 Messages (hold arbitrary data structures)
 Routing (explore topology, generate graph data structure)

Envir, Cmdenv and Tkenv Libraries

 Simulation executes in an environment
 Defines and determines

– Where input data come from
– Where simulation results go to
– What happens to debugging output?
– Controls the simulation execution
– How model is visualized

What is NED Language?
 A network description language
 Creates network topologies in OMNeT++
 You create alternately create topology graphically as well
 Correspondingly NED source code is automatically generated

Typical Ingredients of NED description
 Network definitions
 Compound module definitions
 Simple module declarations

Network Definition

 Network definitions are compound modules
– Self-contained simulation models

Simple Module Declaration

 Describes the interface of modules
– Gates
– Parameters

Compound module definitions
 Declaration of external interface

– Gates
– Parameters

 Definition of
– Sub modules
– Their interconnections

Let us create a topology called My_Network using Graphical Editor

 Network name
=

My_Network

 Module name
=

My_Module

 Compound module
name=

standardHost

 Inside
standardHost

\

More About NED Language
 Inheritance
 Modules and channels can be subclassed
 Derived modules and channels may add
– New parameters
– Gates
 Similarly compound modules may add
– New parameters
– Connections

Example

Interface instantiation
 Module and channel interfaces can be used as a placeholder

– where normally a module or channel type would be used
 Concrete module or channel type determined

– At network setup time by a parameter

Example:

GenericTCPClientApp Module

Derived
(Extended)
Module

FTPApp

BaseHost

BaseHost + WebClientApp

Simple
Compound

ConstantSpeedMobility

RandomWayPointMobility

Run time

IMobility

 MobileHost compound module

Design time

Packages

 Addresses name clashes between different models
 Simplifies specifying which NED files are needed by a specific simulation model

 Example:

Configuring OMNET++ Simulations

Separation of Model and Experiments

 Always good practice to try to separate different aspects of simulation
 Model topology

– NED file
– MSG file

 Model behavior
– C++ code

 Provides cleaner model

Configuring simulations
 How to capture the effect of different inputs?

– Run to run variables
 C++ and NED code do not have such variables
 INI files provide a mechanism to specify these parameters

– omnet.ini

INI File Syntax

package book.simulations;
Package is a mechanism to organize various classes and files. The simulation project
 inside of OMNeT++ is called "Book" and this NED file is found in the "simulations" folder of
the
Project.

 Basically an ASCII text file
 Consists of

– Key-value pairs
 <key>=<value>

INI File Editor

 INI File Editor lets the user configure simulation models for execution
 Both form-based and source editing

INI File Editor

 Considers all NED declarations
– Simple modules
– Compound modules
– Channels, etc

 Fully relates this information to the INI file contents
 Editor knows which INI file keys match which module parameters

Example omnet.ini

 [General]

network = book.simulations.My_Network

#We will make standardHost a TCP Session Application in
order for it to communicate#

**.standardHost.numTcpApps = 1

No of Apps

My_Network
wildcarded as **

Example

[General]

network = book.simulations.My_Network

#We will make standardHost a TCP Session Application in
order for it to communicate#

**.standardHost.numTcpApps = 1

**.standardHost.tcpApp[0].typename = "TCPSessionApp"

**.standardHost.tcpApp[0].connectAddress = "standardHost1"

**.standardHost.tcpApp[0].connectPort = 1000

#We will make standardHost1 a TCP Echo Application, this
means that it
will send #an echo packet once it receives a packet.
**.standardHost1.numTcpApps = 1

**.standardHost1.tcpApp[0].typename = "TCPEchoApp"

**.standardHost1.tcpApp[0].localPort = 1000

**.standardHost1.tcpApp[0].echoFactor = 3.0

#**.ppp[*].queueType = "DropTailQueue"

Application Name

[General]

network = book.simulations.My_Network

#We will make standardHost a TCP Session Application in order for
it to communicate#

**.standardHost.numTcpApps = 1

**.standardHost.tcpApp[0].typename = "TCPSessionApp"

**.standardHost.tcpApp[0].connectAddress = "standardHost1"

**.standardHost.tcpApp[0].connectPort = 1000

#We will make standardHost1 a TCP Echo Application, this means
that it
will send #an echo packet once it receives a packet.
**.standardHost1.numTcpApps = 1

**.standardHost1.tcpApp[0].typename = "TCPEchoApp"

**.standardHost1.tcpApp[0].localPort = 1000

**.standardHost1.tcpApp[0].echoFactor = 3.0

#**.ppp[*].queueType = "DropTailQueue"

Who to
connect

with whom

[General]

network = book.simulations.My_Network

#We will make standardHost a TCP Session Application in order for it
to communicate

**.standardHost.numTcpApps = 1

**.standardHost.tcpApp[0].typename = "TCPSessionApp"

**.standardHost.tcpApp[0].connectAddress = "standardHost1"

**.standardHost.tcpApp[0].connectPort = 1000

#We will make standardHost1 a TCP Echo Application, this means
that it will send #an echo packet once it receives a packet.
**.standardHost1.numTcpApps = 1

**.standardHost1.tcpApp[0].typename = "TCPEchoApp"

**.standardHost1.tcpApp[0].localPort = 1000

**.standardHost1.tcpApp[0].echoFactor = 3.0

#**.ppp[*].queueType = "DropTailQueue"

#**.ppp[*].queue.frameCapacity = 10

#**.eth[*].queueType = "DropTailQueue"

Which port to
connect to

[General]

network = book.simulations.My_Network

#We will make standardHost a TCP Session Application in order for it to
communicate

**.standardHost.numTcpApps = 1

**.standardHost.tcpApp[0].typename = "TCPSessionApp"

**.standardHost.tcpApp[0].connectAddress = "standardHost1"

**.standardHost.tcpApp[0].connectPort = 1000

#We will make standardHost1 a TCP Echo Application, this means that it will
send #an echo packet once it receives a packet.
**.standardHost1.numTcpApps = 1

**.standardHost1.tcpApp[0].typename = "TCPEchoApp"

**.standardHost1.tcpApp[0].localPort = 1000

**.standardHost1.tcpApp[0].echoFactor = 3.0

#**.ppp[*].queueType = "DropTailQueue"

#**.ppp[*].queue.frameCapacity = 10

#**.eth[*].queueType = "DropTailQueue"

Reply size =
Echo Packet* EF

[General]

network = book.simulations.My_Network

#We will make standardHost a TCP Session Application in order for it to
communicate

**.standardHost.numTcpApps = 1

**.standardHost.tcpApp[0].typename = "TCPSessionApp"

**.standardHost.tcpApp[0].connectAddress = "standardHost1"

**.standardHost.tcpApp[0].connectPort = 1000

#We will make standardHost1 a TCP Echo Application, this means that it will
send #an echo packet once it receives a packet.
**.standardHost1.numTcpApps = 1

**.standardHost1.tcpApp[0].typename = "TCPEchoApp"

**.standardHost1.tcpApp[0].localPort = 1000

**.standardHost1.tcpApp[0].echoFactor = 3.0

#**.ppp[*].queueType = "DropTailQueue"

#**.ppp[*].queue.frameCapacity = 10

#**.eth[*].queueType = "DropTailQueue"

Queuing behaviour

Example

[General]

network = book.simulations.My_Network

#We will make standardHost a TCP Session Application in order for it to
communicate

**.standardHost.numTcpApps = 1

**.standardHost.tcpApp[0].typename = "TCPSessionApp"

**.standardHost.tcpApp[0].connectAddress = "standardHost1"

**.standardHost.tcpApp[0].connectPort = 1000

#We will make standardHost1 a TCP Echo Application, this means that it will
send #an echo packet once it receives a packet.
**.standardHost1.numTcpApps = 1

**.standardHost1.tcpApp[0].typename = "TCPEchoApp"

**.standardHost1.tcpApp[0].localPort = 1000

**.standardHost1.tcpApp[0].echoFactor = 3.0

#**.ppp[*].queueType = "DropTailQueue"

#**.ppp[*].queue.frameCapacity = 10

#**.eth[*].queueType = "DropTailQueue"

Buffer Size

Building Simulation Programs

Using GUI Project Builder

 Initial build takes longer on indexing before building the project
 Dependency generation in the generated make files

– Classes, functions, methods, variables, macros

Using Mingwenv

 Once you have the source files (*.ned, *.msg, *.cc, *.h) in a directory
– Change the working directory to there

 Type
 $ opp_makemake

 This will create a file named Makefile
 Type

 $ make
 Your simulation program should build

Where to next!

Running Simulations

What is Simulation Run?

 Launch the built project make file

OMNET++ IDE Features

 Single runs
 Batch runs
 Run numbers
 Graphical mode (Tkenv)
 Command mode(Cmdenv)
 Simulation configuration
 Recording event logs
 Debug support

Quick Run

 In Project Explorer, select a project
 Clicking Run button on the toolbar
 Runs vary

– Folder

A makefile is used to tell the compiler which source files you want to compile.
It'll also do things like name your executable and place it in a specific location.

• Runs if single ini file present
– ini file

• Use this as the main ini file
– NED file

• Scan for available ini file
Launch Configuration

Animation and Tracing
OMNeT++ is capable of

 Animating
– Flow of messages on network charts

 Reflecting
– State changes of the nodes in the display

 Animation is automatic
 No programming need for simulating engineer
 Suitable network simulations

– Rarely need fully customizable animation capabilities

Simulation Tracing

 Simple modules may write textual debug (trace) information like printf()
 OMNET++ provides Module output window
– Special window to display output stream
 Eases following the module execution

Run omnet.ini
From /queuenet

queuenet Launch
Configuration

One or more
ini files

Run
numbe

r
R = 0
One

omnet.

Directories where
the NED files
are read from

Simulation Object Inspection
 An object inspector is a GUI window associated with a simulation object

– Displays contents and properties
 Three types

– Network Display
– Log Viewer
– Object Inspector

Tkenv
Tkenv is a graphical runtime interface for simulations

 It provides
– Network visualization
– Message flow animation
– Log of message flow
– Display of textual module logs

 Inspectors
 Visualization of statistics

– Histograms, etc. during simulation execution
 Event log recording for later analysis

Tkenv in action

Timeline
Future Events Set (FES) on log scale

Object inspector

Network
display Log

viewer

Organizing and Performing Experiments

Need for organizing experiments
Stuart Kurkow, “MANET Simulation
Studies:
The Incredibles,” ACM’s Mobile Computing and Communications
Review, 9(4):
50-61, 2005
Repeatable

 Fellow researcher should be able to repeat
Unbiased

 Results must not be specific to scenario used in experiment
Rigorous

 Scenarios & conditions for experiments must be truly representative
Statistically sound

 Experiments results must not violate mathematical principles

Relationship between terminologies

How to organize experiments
Model

 The executable
 (C++ files & external libraries + NED files
 Invariant for the purpose of experimentation
 INI file not part of model

Study
 One or more experiments to investigate a phenomenon
 Usually many experiments
 One or more models

Experiment
 Exploration of a parameter space on a model
 Only and only one model

Measurement
 A set of simulation runs on the same model with same parameters
 Characterized by INI file
 But with different seeds
 May involve replication for averaging out

Replication
 One repetition of a measurement
 Replication can be characterized by the seed values it uses

Run
 One instance of running the simulation
 Characterized by exact time date
 computer (host name)

Example

Handover
optimization

Sequence Charts

Event Log Tables

 An event log file contains
― Tabulated log of messages sent during simulation

 Between modules
 Self-messages (timers)

― Event details that prompts such sending or reception
 User can control

― Amount of data recorded from messages
― Start/stop time
― Which modules to include in the log

Event Log File Creation (1 of 2)

 Type
 $ record-eventlog = true

 Output placed in
 /results directory

 Filename
 ${configname}-${runnumber}.elog

Using INI file event log configuration

Mobile
IPv6
nodes

Effect of
No. of hosts
Traffic load

No of hosts
= 10
Load
= 3.8

Record event

Sequence Chart
 Displays event log files in a graphical form
• Helps focus on causes & consequences of events/messages
• Helps users understand

― Complex simulation models
― Verify implementation for desired behavior

Understanding the legend:

Compound module
Axis

Compound module
Axis

Axis with attached
Vector data

Module full path
as axis label

Self-message
Processing event

Initialization event

Message processing
Event

Event number

Self-message
Message send

Parts of Sequence Charts

What is Timeline?

 Simulation time mapped onto the horizontal axis
 Various ways

– Intervals between interesting events often of different magnitudes
 Example

– MAC (ms)
– Higher layers (ms)

Types of Timeline

 Linear: simulation time proportional to distance measured in pixels
 Event number: event number proportional to the distance measured in pixels
 Step: distance between subsequent events is same
 Nonlinear: distance between subsequent events is nonlinear function of simulation time

between them

Interpreting Sequence Charts

 Zero Simulation Time Regions
 Gutter
 Events
 Messages
 Displaying Module State on Axes

Zero Simulation Time Regions

Gutter

Events Processing

Messages

\

Displaying Module State on Axes

TicToc Tutorial
TicToc with 2-nodes

• Two nodes, Tic and Toc
• One node initializes by sending a message to the other
• Every time a node receives the message

― Sends it back
• Continue indefinitely

― Till user stops
Creating an empty project

• Open the OMNeT++ IDE
• Navigate to File | New | OMNeT++ Project
• Enter a Name for the project
• Next

Select the Tictoc example file in the Examples folder
You have created Tictoc example project

Opening NED file

• In newly createdproject, navigate to the simulations folder in the Project Explorer

• Open Tictoc.ned

Understanding toctoc1.ned

Opening Simple Module

• Open project explorer
• Open src folder of this project
• Open Txc.ned

Understanding Txc.ned

Opening Simple Module

• Open project explorer

• Open src folder of this project
• Open Txc.cc

Understanding Txc.ned

Understanding omnet.ini

Compiling & Running on Tkenv

Extending TicToc

Refine graphics &
 Tictoc2.ned

Add debugging output
 Txc2.cc

Tictoc2.ned

Tkenv output

Extending TicToc

Add State Variables

• Add a counter as a class member to the module
• Delete the message after 10 exchanges
• Txc3.cc

Txc3.cc

Output:

Adding parameters

Adding parameters

• Add input parameters to the simulations
– Count = 10 now into a parameter that the user can define

• tictoc4.ned
• Txc4.cc
• Omnet.ini

Boolean parameter (decides if module should send out first message in its initialization code)

• tictoc4.ned
• Txc4.cc
• Omnet.ini

tictoc4.ned

Using Inheritance

Using Inheritance
 What is different between tic and toc?

― Parameter values
― Display string

 Inheritance allows to create a simple module
― Then derive modules from ittictoc5.ned

tictoc5.ned

Modeling processing delay

Modeling processing delay

 So far, no processing delay in tictoc
 We need timer in
 Tictoc module to send itself “Event” message
 tictoc6.ned
 txc6.c

Strategy

tx6.cc

Output:

Random numbers and parameters

Random numbers and parameters

 Introduce random numbers in simulation
– Randomly lose packet
– Change delay from 1s to a random value

 txc7.cc
 tictoc7.ned Or omnetpp.ini

txc7.cc

Timeout, cancelling timers

Timeout, cancelling timers
 Getting closer to real world working protocols
 Stop-and-wait protocol
 txc8.cc
 tictoc8.ned
 omnetpp.ini

Strategy

txc8.cc

Output

Retransmitting same message

Retransmitting same message)

 So far we used “tictocMsg”
 It was created afresh everytime

– At tic
– At toc

 In reality, original packet needs to be retransmitted
 Solution: Keep a copy with tic
 txc9.cc
 tictoc9.ned
 omnetpp.ini

Strategy

 Create two new functions
 Conditionally call them in tic and toc

Txc9.cc

generateNewMessage()

sendCopyOf(cMessage *msg)

More than 2 nodes

More than 2 nodes

 Create several tic modules
 Connect them into a network
 One of the nodes generates a message
 Others toss it around in random directions
 Until it arrives at a predetermined destination
 tictoc10.ned
 omnetpp.ini
 txc10.cc

Tictoc10.ned

Output

Channels & inner type definitions

Channels & inner type definitions

 With growing topology
– We can improve connection section

 tictoc11.ned
 omnetpp.ini
 txc11.cc
 Connections with same delay parameter can be typified as channel
 Such channel can then be replicated between gates

Tictoc11.ned

Using two-way connections

Using two-way connections
 So far, each node pair is connected with two connections
 Two-way connection can reduce coding size
 tictoc12.ned
 txc12.cc
 omnetpp.ini
 We define two-way (inout) gates Instead of in and out gates

Tictoc12.ned

Defining our message class

Defining our message class
 Instead of hardcoding tic[3], we need flexibility
 Draw out a random destination
 Add Destination address
 tictoc13.ned
 txc13.cc
 tictoc13.msg
 omnetpp.ini

Strategy : Avoid boilerplate code writing

Strategy :Avoid boilerplate code writing

\

Txc13.cc

\

Output

Displaying no. of packets sent/received

Displaying no. of packets sent/received

 No. of messages at each node
 tictoc14.ned
 txc14.cc
 tictoc14.msg
 omnetpp.ini

Txc14.cc

Object Inspector in Tkenv

Adding statistics collection

Adding statistics collection

 When packet traverses multiple hops, it becomes important to collect network statistics
– Average hop count
– Max, min etc

 tictoc15.ned
 txc15.cc
 tictoc15.msg
 omnetpp.ini

Strategy

Txc15.cc

Visualizing output scalars & vectorsVisualizing output scalars & vectors

 OMNET++ allows to visualize outputs of scalar and vector files
– Filtering
– Processing
– Displaying

Analyzing Results

What is Simulation Analysis?

 Analyzing simulation results is lengthy and time consuming process
 Result are recorded as scalar values, vector values and histograms
 User can apply statistical methods

– Extract the relevant information
– Draw conclusions

Analysis File (.anf)

 A file that automates the steps to analyze the results
– Loading result files
– Filter them
– Transform data

Creating Analysis File

Using the Analysis Editor

\

Datasets

 Describe a set of input data, the processing applied to them and the charts
 Displayed as a tree of processing steps and charts
 Nodes are used for

― Adding and discarding data
― Applying processing to vectors and scalars
― Selecting the operands of the operations
― Content of charts, and for creating charts

Editing Datasets

What is Compute Vectors?
 Both Compute Vectors and Apply to Vectors nodes compute new vectors from other vectors

What is Compute Scalars?
 The Compute Scalars dataset node adds new scalars to the dataset whose values are

computed from other statistics in the dataset

Finally we are done!

Computation Examples 1

Bit rate

 Assume several source modules in the network that generate CBR traffic
 Parameterized with packet length (in bytes) and send interval (seconds)
 Both parameters saved as scalars by each module (pkLen, sendInterval)
 To use the bit rate for further computations or charts

– Add a Compute Scalar node with the following content to create an additional bit
rate scalar for each source module

Value: pkLen*8/sendInterval
Name: bitrate

Throughput

 Assume several sink modules record rcvdByteCount scalars, and simulation duration is
saved globally as the duration scalar of the top-level module.

 We are interested in the throughput at each sink module
 We need to refer to the duration scalar by its qualified name (prefix it with the full name of

its module)
 rcvdByteCount can be left unqualified

Value:8*rcvdByteCount/Network.duration
Name: throughput

Total Received Bytes

 We are interested in the total number of bytes received in the network
 We can use the sum() function
 We store the result as a new scalar of the toplevel module, Network.

 Value: sum(rcvdByteCount)
 Name: totalRcvdBytes
 Module: Network

Bytes Received by Hosts
 If several modules record scalars named rcvdByteCount
 We are only interested in the ones recorded from network hosts
 you can qualify the scalar name with a pattern

 Value: sum(**.host*.**.rcvdByteCount)
 Name: totalHostRcvdBytes
 Module: Network

Average of Peak Delay

 If several modules record vectors named end-to-end delay
 We are interested in average of the peak end-to-end delays experienced by each module
 We can use the max() function on the vectors to get the peak
 Then we need mean() to obtain their averages

 Value: mean(max('end-to-end delay'))
 Name: avgPeakDelay
 Module: Network

Computation Examples 2

Packet loss per client-server pair

 3 clients (cli0, cli1, cli2) and 3 servers (srv0, srv1,
srv2) in the network

 Each client sends datagrams to the corresponding server
 Packet loss per client-server pair computed from the number of sent and received packets.
 We use the i variable to match the corresponding clients and servers.

 Value: Net.cli${i={0..2}}.pkSent -
 Net.srv{i}.pkRcvd
 Name: pkLoss
 Module: Net.srv${i}

Total No. of Transport Packets

 When input scalars are recorded by different modules
– We need the host variable to match TCP and UDP modules under the same host

 Compute the total number of transport packets (the sum of the TCP and UDP packet
counts) for each host

 Value: ${host=**}.udp.pkCount +
 ${host}.tcp.pkCount
 Name: transportPkCount
 Module: ${host}

Modules with largest RTT

 A network has various modules recording ping round-trip delays (RTT)
 We want to count the modules with large RTT values (where the average RTT is more than

twice the global average in the network)
 We need to do it in steps

 Step 1:
 Value: mean('rtt:vector')
 Name: average
 Step 2:
 Value: average / mean(**.average)
 Name: relativeAverage

 Step 3:
 Value: count(relativeAverage)
 Grouping: value > 2.0 ? "Above" : "Normal"
 Name: num${group}
 Module: Net

Simulation Models and INET
What is Simulation Model?

As we know that
OMNET++ is not a simulation itself

 It is a framework that allows other simulation frameworks
– To be created
– To be simulated

 Simulation frameworks are simulation libraries
– Implement protocols
–

Types of Simulation Model
 Domain-specific functionality is provided by model frameworks

– WSNs
– Ad-hoc networks
– Internet protocols,
– Performance modeling
– Photonic networks, etc.,

 Developed as independent projects
 Reusability of models in OMNeT++ is due to its modular architecture
 Simulation models are easily integrated into OMNET++

Some Well-known Types

 INET Framework
 OverSim
 Veins
 INETMANET
 MIXIM
 Castalia

INET

 The INET Framework can be considered the standard protocol model library of OMNeT++
 Contains models for the Internet stack

― TCP, UDP, IPv4, IPv6, OSPF, BGP, etc
 Wired and wireless link layers
 Ethernet, PPP, 802.11, etc)
 Support for mobility
 QoS support
 DiffServ, RSVP
 Several application models
 Maintained by OMNeT++ team officially

OverSim
 Overlay and peer-to-peer network simulation framework
 Contains several models for
 Structured

― Chord
― Kademlia
― Pastry

 Unstructured
― GIA

Veins

 Inter-Vehicular Communication (IVC) simulation framework
 It is a road traffic microsimulation model

INETMANET

 Fork of INET framework
 Simulation frAAamework for mobile ad-hoc networks
 Written and maintained by Alfonso Ariza.

MIXIM

 Modeling framework created for
― Mobile wireless
― Fixed wireless
― WSNs
― BANs and VANs
― Ad-hoc networks

 Radiowave propagation
 Interference estimation
 Power consumption
 Wireless MAC protocols

CASTALIA

 Simulation framework for networks of low-power embedded devices
 Offers models for

― Temporal path loss
― Fine-grain interference
― RSSI calculation
― Physical process model
― Node clock drift
― MAC protocols

Design Tour of INET 1

In this module
We shall take a guided
Tour of INET to

 Understand how ARP works in Ethernet environments
 Walk through features of INET
 Peek into various

– Packets
– Queues
– Internal tables

Why ARP scenario?

 While ARP is not the most important protocol, it is very interesting
 It relates to

– Ethernet
– IP
– And other higher layer protocols

Scenario

 Client computer opens TCP session with server
 Rest of operations (including ARP) follow

– ARP has to learn the MAC address for the default router

Usage Diagram for ARP

On simulation start
Ethernet autoconfiguration precedes ARP

Entities at work
 Various compound modules interact with each other
 TCP host on Ethernet
 Router
 TCP server
 How end-to-end transmission takes place?

TCP Client

Router

TCP Server

End-to-end transmission

Ethernet Compound Module

 In order to further understand how INET works, let us explore Ethernet (Compound
Module)

 Consists of
― Arp
― Encap
― And Mac

Ethernet Compound Module

arpTest.client.eth[0].arp

Inside ARP PaAcket

ARP Packet Class (Generated by .msg file)

Packet Queue (Contains IP Packet)

ARP Cache Build-up

Introduction to top-down approach to modelling and simulation

Top-down approach to NeMS

 Networks are complex to design
 One-time design of simulation is cumbersome
 Top-down: Phased roll-out of model-simulate cycle

― Iterative

Rolling-out of model at every layer to Design a Network

Design goodness (QoE) is user-centric aspects

Strategy

Rules for Mathematical Reading
What is mathematical modeling?
 A Representation of an object, a system, or an idea in some form other than that of the entity itself.

(Shannon)
Quantification

 The act of counting and measuring that maps human sense, observations and experiences
into members of some set of numbers

 Facts represented as quantitative facts are the basis of science

Formalism

 Mathematics creates models that have certain relationships
 Statements of mathematics can be considered to be statements about the consequences of

certain string manipulation rules

Best practices to read mathematical expressions
A) Understanding math is like understanding a foreign language
B) Learn the formulas you already understand
C) Always learn what the formula will give you and the conditions
D) Keep a chart of the formulas you need to know
E) Math is often written in different ways, but with the same meaning

What is an equation?

 A statement that the values of two mathematical expressions are equal
 indicated by “=” sign
 What is a formula then!

Constituents of an equation?

 Expressions consist of one or more of these arguments
– Numerical constants
– Symbolic names
– Mathematical operators
– Functions
– Conditional expressions

Easy math writing

 2-3-4 rule
 Consider splitting every

– Sentence of more than 2 lines
– Sentence with more than 3 verbs
– Paragraph with more than 4 "long" sentences

 Use mnemonics
– s for speed
– v for velocity
– t for time

Easy math writing
 Organize into segments

– An entity intended to be read comfortably from beginning to end!
 Segments are standalone

– Definite start
– Definite end

 Segments should be represented linearly

QoE—Usability
Everything starts with “You”

What is usability?

 Usability (Ub) is defined as the ease of use with which network users can access the network
and services

 Ergonomic and technological facilitation
– Networks should make users’ jobs easier

 Some design decisions have a negative affect on usability
– Strict security

 Some choices are user friendly
– WiFi
– DHCP

Understanding usability
Sanjay Kumar Gupta, “Usability Models Based on Network Artifacts for Rural Development” Int. J.
Computer Technology & Applications,Vol 4 (3),508-513

 Ub: Usability as ease of use
 Ue: Use effort
 Ub � 1/Ue

Usability expressions

Connotations

 Usability (Ub) is expressed as a function of network devices
 The top-down approach implies that the assessment of overall usability has to be based on

the performance of
– Hubs/switches
– Routers/gateways

QoE—Scalability
Ability to grow

What is scalability?

 Scalability refers to the ability to grow (or add)
 Factors to be added

― Number of applications
― Number of sites
― Addressing at sites
― No. of users
― No. of servers

Effects of growth

 Efficiency decreases with increasing factors
– But increases with increasing “other” factors

 Execution time increases with increasing factors
– But decreases with increasing “other” factors

Understanding efficiency & speed-up

 Execution time tends to vary with problem size
― Must be normalized when comparing network performance at different traffic

volumes
 ERelative = T1 ¸ (No. of hosts ´ TNo of hosts)
 SRelative = No. of hosts ´ E1

Understanding execution time
TimeExecution = TCompute + TComm + TIdle
Tmsg = ts + twL

Connotations
 Scalability is expressed as a function of factors in the network
 This criteria affects the design choices made for the network model

QoE—Planning for Expansion
Need to expand is ever increasing
Why plan?

 Expansion is unavoidable
 Unplanned expansion causes performance degradation

– Execution time
– Efficiency

 Planning is necessary
– Preemption is key
– Late planning is no planning

Considerations for Planning

 Nodes and locations
– End hosts
– Switches
– Routers

 Equipment scalability
– No of ports

 Naming system
– Extensible tuple

 (Node ID, Network ID)
 Application-specific protocol choices

– Email
– File transfer, sharing & access
– DB access & updating
– Web browsing
– Network game
– Remote terminal
– Videoconferencing
– Video on demand (VoD)

QoE—Expanding Access to Data
Scalability without continued access to data is futile

Access to data

 Social networking has emerged
 Extranets need topology definitions & dedicated bandwidth allocation

– Classic 80-20 rule ´
 Increased access

– Data available to more departments
– Increased utilization of network services

Metcalfe's Law

 Community value of a network grows as the square of the number of its users
 Often cited as an explanation for the rapid growth of the Internet

Expression for Metcalfe's Law

n(n − 1)/2 or O(n2) connections between “n” nodes

Manifestation of Metcalfe's Law

 Can be seen in network applications

Connotations

 Network model is more scalable than the number of nodes and servers in the topology
 The total traffic load generated depends upon the user activity

QoE—Constraints on Scalability
The whole cannot be greater than the sum of its parts
 (Apologies to Aristotle)

Recall parts of model!

 Nodes
― Computing
― Memory

 Protocols
― Operation
― Message formats

 Devices
― Ports
― Specifications

 And more!

Identify their upper bounds

 Nodes
― Nmax

 Protocols
― Operation: Omax
― Message formats: Mmax

 Devices
― Ports: Pmax
― Specifications: Smax

Maximum scaled up network
 Given by MinMax decision rule

 Min(Nmax,Omax,Mmax,Smax)
 The strength of the chain is determined by the weakest link

Specific example

 Constrained addressing
― IPv4
― Top-level exhaustion occurred on 31 Jan 2011
― 24 Sep 2015 for North America

 Unconstrained addressing (for now!)
― IPv6

 With everything as IoT, 2128 is the constraint

QoE—Availability
The degree to which a system, subsystem or equipment is in a specified operable and committable
state

Everything may fail, not if but when!

 Networks Nodes Links
 Typical failure of components represented by the famous

Network Availability

 Percent uptime per year, month, week, day, or hour to total time in that period
– For example:

• 24/7 operation
 Network is up for 165 hours in the 168-hour week

– Availability is 98.21%
Application perspective

 Applications may require different levels
– Real time

• Video/Audio
– Commerce

• Non-repudiable transactions
– Non-real time

• Email
Availability vs reliability

 Reliability is the ability of a system to complete its function
– accuracy
– error rates
– Stability

 Even if a system is available does not mean its reliable
Availability vs capacity

 A system that runs out of capacity becomes unavailable
– ATM connection admission control
– Regulates no. of cells into network

 If capacity & QoS for connection unavailable
– cells dropped

Availability vs redundancy
 Redundancy is not a goal
 It is provided to achieve a level of availability

– Only a means!
Availability vs resiliency

 How much stress can be taken by network?
– Availability difficult to maintain
– No. of failures that make a system unavailable

 How soon can a network rebound?
– Availability difficult to achieve

QoE—Disaster Recovery
Amat Victoria Curam (Latin)
Victory Loves Preparation

Benjamin B. M. Shao, “Allocating Redundancy to Critical Information Technology Functions for
Disaster Recovery,” Proc. 10Th Americas Conference on Information Systems, Aug. 2004

The question
How to allocate redundancy to IT functions such that the overall survivability of these IT functions
against disasters is maximized and the cost remains under budget.

Redundancy

 Redundancy in preparation for disasters provides disaster preparation
– Proactive prevention
– Reactive recovery
– Backup facilities

Redundancy Allocation Scenario

Redundancy Allocation Model

 IT function can be implemented by a number of IT assets
– Computing hardware
– Communication links
– IT personnel, and

 other infrastructure

Redundancy Allocation Model

Redundancy Allocation Model

 m fails against d only when all of its selected solutions fail at same time
– As long as one of the selected solutions survives, m would still be operational

QoE—Specifying Requirements
Measurable is achievable

Availability in %age per annum

 Uptime of 99.70%
– 30 mins downtime

 Uptime of 99.95%
– 5 mins downtime

 Map onto totally deviant requirements

Availability in calendar year

 Downtime on weekdays
– vs weekends

 Project deadlines

Availability in spurts

 Staggered vs onetime
 99.70% uptime

― 30 minutes per year
― 10.70 sec per hour

 Acceptable for some users not to others
 Allowed for few applications

QoE—Five Nines Availability
The devil is in the details of availability

5 9s as best-case availability

 Some enterprises may want 99.999%
– 5 minutes downtime per year

 Sometime or all the time?
– A million $ worth question for managers

 Repair time inclusive or exclusive
– In service upgrades (hot-swaps) possible?

 Hardware manufacturers provide 5 9s
 However sum is not equal to parts

– Carrier and power outages
– faulty software in routers & switches

 Unexpected and sudden increase in bandwidth or server usage
 Configuration problems, human errors (90% of all!)
 Security breaches, and software glitches

Shifting Impact of 9s on time

99.999% Availability might require triple redundancy

One being active, one in hot standby ready to be used immediately, one in standby or maintenance

QoE—Cost of downtime
40 percent of companies that
shut down for three days failed within 36 months (Contingency Planning and Management
magazine)

Source: Top Business Continuity Priorities for 2004.©EnvoyWorldWide - February, 2004

Source: New England Disaster Recovery Information X-Change (NEDRIX)

Step-wise approach to measure downtime cost
1. Identify Business Continuity Components
2. Define What You Protect
3. Prioritize Business Functions
4. Classify Outage Types,
5. Calculate cost

Identify Business Continuity Components

 People
 Property
 Systems
 Data

Define What You're Protecting

 Define core competencies
― product, service, process, or methodology

Prioritize Business Functions
 Business functions necessary to sustain that core competency

― And associated IT infrastructure
 80% of available resources restore 20 % systems, applications, and data

Outage Types, Frequencies, & Duration

 Branch Outage
 Regional outage
 Data center outage
 National outage

Calculate cost
Frequency x Duration x Hourly Cost = Lost Profits

Example

 If there were 90 branch outages in an average year
― Each lasting an average of one-and-a-half hours
― Costing $300/hour 90 outages x 1.5 hours x $300/hour = $ 40,500

 Cost of branch outages for a year =$40,500

QoE—MTBF AND MTTR
Averaging out the availability

Availability as MTBF

 Mean time bw failure (MTBF) & mean time to repair (MTTR)
 Component vs service

– Mean time bw service outage (MTBSO)
– Mean time to recover from service outage (MTTSO)

 Typical MTTF value is once per 4000 hrs or 166.7 days
 Typical acceptable MTTR value is one hour

 Availability = MTBF/(MTBF + MTTR)

 4,000/4,001 = 99.98% availability

 MTBF with MTTR help to assess frequency and length of service outage
– Mean value must be supported with variance

 The difference between MTTF and MTBF is the assumption of the former that the system

shall be repaired while in the later the system is replace

QoE—Network Performance
Composite metric that is end-to-end

Definition
 An overall working
 Many different ways to measure the performance of a network

― Each network is different in nature and design
 Modeled
 Simulated
 Measured

QoE—Optimum Network Utilization
Optimum is “As good as it gets”

Definition of optimum

 Selection of a best element (with regard to some criteria) from some set of available
alternatives

Optimum network utilization

 How much % of bandwidth capacity in a specific time period?
 Time varying phenomenon

– Instantaneous, averaged, weighted)
 Both goal & constraint
 Typical value is 70$%

– Exceeding this results in performance degradation
 WAN links utilization is more crucial than LAN

– Pay per packet
 Compression, caching and concatenation used to reduce WAN utilization
 LANs are over-budgeted

– Fast Ethernet)
 Full-duplex vs. half duplex switches
 User activity levels
 LANs suffer from exceeding utilization in switch-to-switch

QoE—Throughput
Throughput = Goodput + Badput

Definition of throughput
 Quantity of error free data transmitted/ sec

– Erroneous transmissions futile
 Ideally, should be the same as capacity

Deviation indicates the limitations of media type, device and network

QoE—Throughput of devices
Simulation of devices and specifications is vendor specific

Types of device throughputs

 Inter-networking devices give throughput as in
– TCP/IP: Packets per second
– ATM: Cells per second

 Sizes vary from 53, 64 to 1518 Bytes

Example—CISCO devices

 Traffic generators-device-traffic checkers in tandem measure throughput
– Smaller packets give better pps

 Cisco claims of 400 million pps for the Cisco Catalyst 6500 switch
CISCO claims throughput; which in actual is the capacity

QoE—Application Layer Throughput
Application layer uses lower layers unfairly

Definition

 Application layer throughput = goodput + badput
 Goodput vs badput
 Badput contributed by retxns, header etc

– Fraction of packets that collided/lost
 Fc = C/N
 Fc = L/N

Factors affecting goodput

 End-to-end error rates
 Protocol functions (handshaking, windows, & acks)
 Protocol parameters (frame size, retx timers)
 pps rate of networking devices
 Lost packets at networking devices
 Workstation & server performance factors:

– Disk-access speed
– Disk-caching size
– Device driver performance

 Computer bus performance (capacity/arbitration)
 Processor (CPU) performance
 Memory performance (access time for real and virtual memory)
 Operating system inefficiencies
 Application inefficiencies or bugs

An, Cheolhong, and Truong Q. Nguyen. "Error Resilient Video Coding using Cross-Layer
Optimization Approach." IEEE Transactions on Multimedia 10 (2008): 1406-1418.

Connotations
 Application layer throughput provides insight into “useful' transmissions

– It relates resource allocation down to physical layer throughput

QoE—Accuracy
Being accurate is not being precise

Definition
 Data sent and received should be the same
 Also referred as the number of error-free frames transmitted relative to the total number

of frames transmitted

Factors affecting accuracy

 Packet reordering at routers
 Power surges

– Lightning impulse of 1 s on 10 Mbps link
 Impedance mismatch problems
 Poor physical connections
 Failing devices
 Noise caused by electrical machinery
 WAN links give BER and SNR (10-5~10-11)
 LANs specify erroneous frames per 106 Bytes
 On shared Ethernet, collisions main cause of accuracy degradation
 First 64 Bytes collision (legal or runt frames)
 Typical acceptable value is .1% frames
 Late collisions are illegal

• Nahum, Erich M. "Validating an architectural simulator." Department of Computer Science,

University of Massachusetts at Amherst. 1996.

Accuracy = [(Real value – Error) / Real value] * 100

The frequency of events plays a key role in the overall accuracy
– Ei is the event i in the system
– freq(Ei) is the frequency of event i
– real(Ei) is the desirable (real) cost of event i
– sim(Ei) is the simulated (obtained) cost of event i

QoE—Efficiency
Boiling water analogy

Definition

 Application layer throughput = goodput + badput
 Goodput vs badput
 Badput contributed by retxns, header etc

– Fraction of packets that collided/lost
• Fc = C/N
• Fc = L/N

Factors affecting efficiency

 Access protocols
– high number of users showing activity
– Ethernet not efficient at high collision rates

 Frame size
– Using large frame is useful for single user on WAN links

 Serialization delay on WAN links results in unfair treatment
– for real-time shorter frames enquired in router

Kleinrock, Leonard. "Creating a mathematical theory of computer networks." Operations Research
50.1 (2002): 125-131.

If you scale capacity more slowly than throughput while holding the average response time
constant, then the channel efficiency (channel utilization) will increase

Average Efficiency
Latora, Vito, and Massimo Marchiori. "Efficient behavior of small-world networks." Physical
review letters 87.19 (2001): 198701.

 E(G) is the average efficiency of a network G
 n denotes the total nodes in a network
 d(i,j) denotes the shortest path between a node i and a neighboring node j

QoE—Delay and Jitter
Applications might forgive delay but not jitter
Delay

 Voice and video applications (especially interactive) demand minimum delay
 Other applications such as Telnet remote echo need timed performance

Sources of packet delay

Delay variation (jitter)

 The amount of time average delay varies
 Voice, video, and audio are intolerant of delay variation

Source of jitter

QoE
It is the small factors that matter the most

Causes of Delay

 Propagation
– Media type
– Length

 Transmission (serialization)
– 1024 Bytes on T1

 Switching delay
– upto 5-20 microsec for 64 Bytes frame

 Router delay
– Look-up, router architecture, configuration
– Software features that optimize the forwarding of packets

 NAT, IPSEC, QoS, ACL Causes of Delay (3 of 3)
 Queuing delay

– Dependent upon utilization

 Formula
 Queue depth = Utilization/(1 – Utilization)

Queue Depth vs. Utilization

Implications of queuing delay

QoE—Delay variation
All animals are equal, but some animals are more equal than others (George Orwell)

Delay variation

 Amount of time average delay varies
 Voice, video, and audio are intolerant of delay variation
 Tradeoffs needed for efficiency for high-volume applications versus lowConcept of jitter

buffer to smoothen out the jitter
 Variations on the input side are smaller than the buffer
 Acceptable variation is 1-2% of the delay

Jitter types

 Jitter is quantified in two ways
 Delay jitter

― bounds maximum difference in total delay of different packets
― Assumes source is perfectly periodic

 Used for Interactive communication
– voice and video teleconferencing

 Helps to translate to maximum buffer size needed at the destination Second measure is rate
jitter

 Bounds difference in packet delivery rates at various times
 Measures difference between minimal and maximal inter-arrival times (reciprocal of rate)
 Useful measure for many real time applications
 Video broadcast over the net
 Slight deviation of rate translates to only a small deterioration in the perceived quality

Jitter Analysis Points

Kay, Rony. "Pragmatic network latency engineering fundamental facts and analysis." cPacket
Networks, White Paper (2009): 1-31.

Measurement of jitter

QoE—Response Time
Response time is relative phenomenon

Definition

 The amount of time between a request for some network service and a response to the
request

Measurement Points Locations
Tim R Norton. "End-To-End Response Time: Where to Measure?" Computer Measurement Group
Conference Proceedings, 1999.

Measurement of Response Time

[1] Reinder J., Bril., System Architecture and Networking. TU/e Informatica
[2] Sjodin, Mikael, and Hans Hansson. "Improved response-time analysis calculations." Real-Time
Systems Symposium, 1998. Proceedings., The 19th IEEE. IEEE, 1998.

Measurement of Response Time

Measurement of Response Time
Ceiling function represents maximum number of pre-emptions by higher priority processes

QoE—Security
Threat = Capability + Intention

Definition

 Protection of information systems from threat
– Hardware
– Software
– Information on them

 Avoidance from
– Disruption
– Misdirection of the services they provide

Implementation
 Includes controlling physical access to the hardware
 Protecting against harm via

– Network access
– Data
– Code injection

Trusted Computing Base

 Rainbow Series(orange book)
 Set of all hardware, firmware, and/or software components
 Critical to its security
 Bugs occurring inside jeopardize security of entire system

Bell-Lapadula Model

 Users as Subjects
 Predicates

– Devices and data as Objects
 Process algebra provides the action (verb) of subject over predicates

Bell-Lapadula Model

 Users as Subjects
 Predicates

– Devices and data as Objects
 Process algebra provides the action (verb) of subject over predicates

QoE—Reconnaissance Attacks
Prevention is better than cure
Definition

 Reconnaissance is a type of computer attack
 Intruder engages with the targeted system

– Gathers information about vulnerabilities

Types

 Active reconnaissance
 Port scanning
 Passive reconnaissance
 Sniffing
 War driving
 War dialing

Targeted Threat Index

Hardy, Seth, et al. "Targeted threat index: Characterizing and quantifying politically-motivated
targeted malware." Proceedings of the 23rd USENIX Security Symposium. 2014.

Targeted Threat Index
 Vulnerability of system
 Depends upon

– Target feature set
– Attacker methods
– Attacker aggressiveness

 TTI = Method * Implementation

QoE—Security Requirements

Definition
 Enlist all the activities, actions, hardware/software
 Confidentiality
 Integrity
 Authorization
 Authenticity
 Availability
 Encryption

Assessing Security Levels
Burchett, Ian. "Quantifying Computer Network Security." (2011).

Common Vulnerability Scoring System
 Provides a repeatable quantitative score for computer security vulnerabilities

Vulnerability Compositing Method per Client

QoE—Manageability
Definition
 The level of human effort required to keep that system operating at a satisfactory level

– Deployment
– Configuration
– Upgrading
– Tuning
– Backup
– Failure recovery

Assessing Manageability
Candea, George. "Toward Quantifying System Manageability." UseNix HotDep. 2008.

Manageability Metric

\

The notion of efficiency of management operations, which is approximated by the time Timei the
system takes to complete Taski
Approximate complexity of a management task by the number of discrete, atomic steps (Stepsi)
required to complete Taski

Commentary

 Manageability is reduced proportionally to how long the management tasks take
 And to how many atomic steps are involved in each such task
 The fewer steps there are, the lower the exposed complexity of the system
 The faster the management tasks can be completed, the lower the likelihood of trouble
 Less management a system requires (i.e., the longer TotalTimeeval for the same Ntotal), the

easier it is to manage
 Equivalently, the less the system needs to be managed, the better

QoE—DoS Attack
Definition

 An attempt to make a machine or network resource unavailable to its intended users,
 Temporarily
 Indefinitely

Implementation
 Transmit a large number of packets

– TCP Syn attack
– Ping attack

 Server crashing attack
– Large computational load

A Simple Attack Analysis
He, Changhua. Analysis of security protocols for wireless networks. PhD Diss. Stanford University,
2005.

A Simple Attack Analysis

 Attack type: TCP SYN flooding DoS attacks
– n packets are used for attack

 Counter: Random drop queue 'Q'
– Q = queue depth

Attack success probability

 P = 1 − (1 − 1/Q)n
Attack failure probability

 1-P

A Simple Attack Analysis

Making Network Design Tradeoffs
Definition

 Make balance between desirable & incompatible features
 A compromise
 Often conflicting technical goals
 Make tradeoff a necessity

– Availability vs affordability
– Usability vs security

A Simple Communication tradeoff
Compressing of an image

 Reduces transmission time/costs
 At the expense of CPU time
 Tradeoff between computation and communication

Tradeoff at Network Level

 Throughput is at conflict with fairness
 Tradeoff can be implemented through weighted scheduling

A child with Rs. 100 in a convenience store!
Handle it as a knapsack problem!

A child with Rs. 100 in a convenience store!

Problem Set 1

Effect of Topology Factors
1. What is the total data rate of the network?
2. What is the application that is generating the maximum load per user in Administration
department?
3. What is the application that is generating the minimum load per user in Math and Science
department?

Effect of Routing Protocols
1. If RIP sends a routing packet every 30 seconds and each packet contains 25 routes (Each route is
20B), what is the bit rate?

Problem Set 2

Effects of Deployment/Protocol Behaviors
1. Where is the data center?
2. What is the data rate available for users of Eugene?
3. What is the maximum Internet speed available to the users?
4. Label the router that needs to implement firewall.
5. If a user in Medford sends out a broadcast 255.255.255.255, what is the impact?

Queuing Behaviors
1. A CISCO switch has 20 users (clients and servers), each offering packets at a rate of 200 packets
per second. If the average length of the packets is 64 Bytes, and the transmission rate of the switch
is 10 Mbps measure the load of all the users and the LAN utilization. Then measure the queue
depth

Understanding Network Design
1. Label the bastion host in the network.
2. Label the fastest end-to-end interoffice segment.
3. Label the slowest end-to-end interoffice segment.
4. How many total LAN segments are there?
5. Label at least one network where duplex auto-negotiation might help.
6. Label at least one segment where BERT can be used to measure BER.

Simulate FTP Scenario
A Real World Scenario

Factors affecting goodput

 End-to-end error rates
 Protocol functions (handshaking, windows, & acks)
 Protocol parameters (frame size, retx timers)
 pps rate of networking devices
 Lost packets at networking devices Workstation & server performance factors:
 Disk-access speed
 Disk-caching size
 Device driver performance
 Computer bus performance (capacity/arbitration)
 Processor (CPU) performance
 Memory performance (access time for real and virtual memory)
 Operating system inefficiencies
 Application inefficiencies or bugs

Implementation in INET
Source: https://omnetpp.org/doc/inet/api-current/neddoc/index.html
examples/inet/bulktransfer/BulkTransfer.ned

Usage diagram

Source: src/applications/tcpapp/TCPBasicClientApp.ned
numRequestsPerSession = exponential(3)
 requestLength = truncnormal(20,5)
 replyLength = exponential(1000000)

What to model?
1. Total time it takes to complete file transfer
2. Total goodput vs badput
3. Network utilization
4. Delay variation
5. Usability
6. Scalability
7. Availability

Parameters

What to model?

Simulating DoS Attack

Igor Kotenko & Alexander Ulanov , “Simulation of Internet DDoS Attacks and Defense ,” ISC
2006, LNCS 4176, pp. 327–342, 2006.

Kaur, Rupinderjit, Amrit Lal Sangal, and Kush Kumar. "Modeling and simulation of DDoS attack
using Omnet++." Signal Processing and Integrated Networks (SPIN), 2014 International
Conference on. IEEE, 2014.

What to model?

Configuring Ping of Death attack

cSimpleModule::initialize();
packetSize = par("packetSize");
sendIntervalPar = &par("sendInterval");
hopLimit = par("hopLimit");
count = par("count");
startTime = par("startTime");
stopTime = par("stopTime");

Summarizing top-down approach
Our Strategy

Application layer Roll-out for M&S

Simulate RTP with Packet Loss
Family of RTP

RTP
• Real-time Transport Protocol (RTP) is a network protocol
• Delivers audio/video over IP networks
• Streaming media
• Telephony
• Video teleconference
• Television service
• Push-to-talk over web

Delay/Jitter Analysis Points

Inet for Simulating RTP
(examples/rtp/unicast1/unicast1.ned)

src/nodes/rtp/RTPHost.ned

Usage Diagram and Statistics

Client Server Architectures
An architecture for data exchange

Definition

 One known server
 Always-on
 Permanent IP address
 Clients communicate with server
 Intermittently connected

Performance

 Distribution time for the client-server architecture denoted by Dcs
 Size of the file to be distributed (in bits) by F
 Number of peers that want to obtain a copy of the file is N
 dmin denotes the download rate of the peer with the lowest download rate
 Server upload rate is us

Web Server Modeling
Message Flow

Operation

 Handles multiple HTTP requests
 Accepts and parses the HTTP request
 Gets the requested file from the server's file system
 Creates and sends an HTTP response message consisting of the requested file

Characterizing web server

 Buffer size per client
 Number of clients
 File size that it handles
 Processing time
 Time out interval

HTTP Modeling
Time line operation

Variants
 HTTP is based on sequenced messages
 Underlying TCP handshaking determines the overall performance

– Persistent
– Non-persistent
– Pipelined
– Caching

Non-Persistent Connections
TCP handshaking required for every object

Modeling Non-persistence
 It requires 2 RTTs per object
 Total time for N objects

N*2RTT + N*Transmit time
 Consequent effect on simulated time is exacerbated in a multi-hop real world network

Persistent Connections
TCP handshaking required once

Modeling Persistence
 It requires 1 RTTs per object
 Total time for N objects

(N+1)*RTT + N*Transmit time
 Consequent effect on simulated time is noticed in a multi-hop real world network

Cache Response Time
Caching operation

 User sets browser: Web accesses via cache
 Browser sends all HTTP requests to cache

― Object in cache: cache returns object
― Else cache requests and returns object from origin server

Clients requesting objects through cache

Advantages of caching

 Reduces response time for client request
 Reduce traffic on an institution’s access link

Simulating Scenarios with and without cache

Factors affecting caching

 Average request rate from institution’s browsers to servers
 Round trip delay from institutional router to server
 Correlation between requests
 Average object size

Example

 Average object size = 100,000 bits
 Avg. request rate from institution’s browsers to origin servers = 15/sec
 Delay from institutional router to any origin server and back to router = 2 sec Utilization on

LAN = 15%
 Utilization on access link = 100%
 Total delay = Internet delay + access delay + LAN delay

= 2 sec + minutes + milliseconds
 If hit rate is .4
 40% satisfied locally
 60% requests satisfied by server
 Utilization of access link reduced to 60% (say 10 ms)
 Avg delay = Internet + access + LAN

= .6 * (2.01) s + ms < 1.4 secs

FTP Efficiency
FTP operation

 Client contacts FTP server at port 21
 Client obtains authorization
 Browses remote directory
 Server receives file transfer command
 Server opens TCP data connection to client
 After transfer connection closed

Control Signaling of FTP

Computational Efficiency of FTP
(COURTESY: ALEBRA TECHNOLOGIES INC.)

TCPU = Total CPU seconds recorded during the period of file transfer
ICPU = Measured CPU seconds when machine is idle for the equivalent period
MIPS = Machine performance rating in Millions of Instructions per second
TRATE = Transfer rate in megabytes per second

SMTP Scalability
Entities of SMTP Architecture

Recall scalability

 Ability to grow
 Scaling may include

― Number of user sites
― Inter-site topology
― No. of user agents
― User mailbox size
― No. of mail servers
― Outgoing queue size

Efficiency & speed-up for SMTP
Mail delivery time tends to vary with scaling factors

• Must be normalized when comparing SMTP performance at different traffic volumes
― On single server
― Servers confederation

ERelative = T1 ¸ (No. of hosts ´ TNo of hosts)
SRelative = No. of hosts ´ E1

DNS Load Distribution & Loss
Typifying DNS operation

Casalicchio, E., Caselli, M., Coletta, A., & Fovino, I. N. Aggregation of DNS health indicators:
issues, expectations and results

Health metrics
Incoming Bandwidth Consumption (IBC)

 Ratio between total amount of incoming data during a session over the duration of the
session

 Range: [0, IBC max]
 measured in Mbit/s

Health metrics
Incoming Traffic Variation (ITV)

 For each session i,
(IBCi − IBCi−1)/lengthi

 IBCi is incoming bandwidth consumption in ith session
 lengthi is duration of that session

Traffic Tolerance (TT)
 Measures the Round Trip Time (RTT) of a IP packet flowing between end-user node and

ISP’s recursive resolver in seconds

DNS Requests per Seconds (DNSR)
 It gives the total number of DNS queries in the session

Rate of Repeated Queries (RRQ)
 In a single session a name is resolved only once due to caching
 The metric returns no. of repeated DNS queries in a session for same name if the query is

lost
– Or not cached

Peer to Peer Scalability
Operation

 No always-on server
 Arbitrary end systems directly communicate
 peers are intermittently connected
 Change IP addresses

File Distribution Problem

Performance

 Distribution time for the P2P architecture denoted by DP2P
 Size of the file to be distributed (in bits) by F
 Number of peers that want to obtain a copy of the file is N
 dmin denotes the download rate of the peer with the lowest download rate
 Upload capacity of the system as a whole = the upload rate of the server plus the upload

rates of each of the individual peers, that is, utotal = us + u1 + ... + uN
 Server upload rate is us

Torrents Efficiency
Basic Torrent Operation

Factors affecting efficiency
 Heterogeneous upload capacity
 Diversities of neighbor selecting mechanisms
 Geographical distribution of peers
 Downloading rates of LocalBT clients
 Peer selection policy

Performance

Reliability of Circular DHT
Operation of Circular DHT

REDUNDANCY HANDLES FAILURES

Cost of Reliability

l leaf-set keepalive messages every T seconds
2-messages for probe and response Routing table probes every Trt
Summation computes expected number of routing table entries (128/b rows and 2b columns)

 Last expression is a binomial distribution

Problem Set 1
Network Latencies

Consider an institutional network connected to the Internet. Suppose that the average object size is
850,000 bits and that the average request rate from the institution’s browsers to the origin servers is
16 requests per second. Also suppose that the amount of time it takes from when the router on the
Internet side of the access link forwards an HTTP request until it receives the response is three
seconds on average.

Model the total average response time as the sum of the average access delay (that is, the delay
from Internet router to institution router) and the average Internet delay. For the average access
delay, use Δ/(1 – Δb), where Δ is the average time required to send an object over the access link
and b is the arrival rate of objects to the access link.

Now suppose a cache is installed in the institutional LAN. Suppose the miss rate is 0.4. Find the
total response time.

HTTP Performance
Suppose that an HTML file on a web server references eight (8) very small objects. Neglecting
transmission times, how much time it takes when non-persistent HTTP connection is used and the
browser is configured for five (5) parallel connections?

A. 18RTT B. 6RTT
C. 3RTT D. None of these

Problem Set 2
P2P Protocols

Suppose that peer 3 learns that peer 5 has left. How does peer 3 update its successor state
information?
A. It asks peer 4 B. It asks peer 8
C. It asks peer 2 D. None

User Activity Monitoring
For a 1 Mbps link, if each user generating 200 kbps is active for 20% of the time, what is the
probability that out of a total of 100 users, more than 5 users be active?

Simulate HTTP Persistence

HTTP Evolution

 RFC 793 does not support persistence
– HTTP1.0

 Additional mechanism needed
– Use keep-alive

 HTTP 1.1 is persistent by default

HTTP Support in OMNET++
Module Interface ITCPApp

 Template for TCP applications (Inheritance)
 It shows what gates a TCP app needs
 to be able to be used in StandardHost etc

HTTP Browser in OMNET++
src/applications/httptools/HttpBrowser.ned
Default support is HTTP 1.1
simple HttpBrowser like ITCPApp
{ parameters:
 int httpProtocol = default(11); }
Supported Modes

 Random request mode
 Browser uses statistical distributions generate requests to random web servers

 Scripted mode
 Browsing behavior determined by a list of predefined web sites to visit at specific times

Simulate DNS Query Response
Basic Operation

DNS Support in OMNET++

 Extensions provide classes and functions to simulate DNS and MDNS traffic
 Implement RFC 1035

Supported DNS Operations

 Name servers with recursive resolving capabilities
 Authoritative servers with DNS zone configuration using master files
 Caching servers without zones
 Only recursively resolving
 DNS Cache base that can be extended
 Caches based on different policies possible
 DNS client that can query a DNS server

Simulate TCP Threading
Threaded Server

INET Support for TCP

 RFC 793 - Transmission Control Protocol
 RFC 896 - Congestion Control in IP/TCP Internetworks
 RFC 1122 - Requirements for Internet Hosts -- Communication Layers
 RFC 1323 - TCP Extensions for High Performance
 RFC 2018 - TCP Selective Acknowledgment Options
 RFC 2581 - TCP Congestion Control
 RFC 2883 - An Extension to the Selective Acknowledgement (SACK) Option for TCP

Features

• RFC 793 TCP states and state transitions
• Connection setup and teardown as in RFC 793
• Segment processing
• Receive buffer to cache above-sequence data
• Data not yet forwarded

Simulate HTTP Handshaking
HTTP Requests

HTTP/1.0:

 GET
 POST
 HEAD
 asks server to leave requested object out

of response

HTTP/1.1:

 GET, POST, HEAD
 PUT
 uploads file in entity body to path

specified in URL field
 DELETE
 deletes file specified in the URL field

HTTP Response
200 OK
request succeeded, requested object later in this msg
301 Moved Permanently
requested object moved, new location specified later in this msg (Location:)
400 Bad Request
request msg not understood by server
404 Not Found
requested document not found on this server
505 HTTP Version Not Supported

HttpBrowser Class Reference
(Inheritance Diagram)

Intro & Transport Services
Introduction

 Transport layer is the big brother
 Manages end to end delivery of data
 Modeling of transport layer is pivotal to the overall performance

Transport Services
 Multiplexing and demultiplexing
 Reliable, in-order delivery (TCP)
 Congestion control
 Flow control
 Connection setup
 Unreliable, unordered delivery: UDP
 “best-effort” IP
 Services not available
 Delay guarantees
 Bandwidth guarantees

Modeling Approach

Multiplexing & Demultiplexing
Basics

Capability of Port #

Cost of Multiplexing

Multiplexing Communication Link
Typical Multiplexing Techniques

Capacity Overhead

Capacity overhead ρ is defined as %age increase in the resource requirement of a practical
multiplexing scheme when compared to the optimal

Amount of resources allocated to application i at time t using the optimal and practical allocation
scheme respectively

Gain in Statistical (Packet) Multiplexing

 Each user: 100 kb/s when “active”
 active 10% of time
 Strict Multiplexing: 10 users
 Statistical Multiplexing: with 35 users, probability > 10 active at same time is less than

.0004

Checksum
Introduction

 Transport layer incorporates error detection
 Checksum is “checking the sum” both at the sender and receiver
 Performed at the header or the entire body

Operation in Brief & Performance

Overhead and Operational cost

 Divide the M-bit data into N-bit chunks
– Total chunks M/N

 Checksum is also N-bit
 Total sums M/N + 1

Undetected Errors
 Reordering of 2 byte words, i.e. 01 02 03 04 changes to 03 04 01 02
 Inserting zero-valued bytes i.e. 01 02 03 04 changes to 01 02 00 00 03 04
 Deleting zero-valued bytes i.e. 01 02 00 00 03 04 changes to 01 02 03 04
 Replacing a string of sixteen 0's with 1's or 1' with 0's
 Multiple errors which sum to zero, i.e. 01 02 03 04 changes to 01 03 03 03

Go Back N
Introduction

 Retransmission strategy (ARQ)
 No need to buffer at receiver
 Wheat and rice analogy!

– Go back N is wheat
– Fresher is better

Performance Amidst Packet Loss

Efficiency without Errors

 Choose N large enough to allow continuous transmission while waiting for an ACK for the
first packet of the window

 If N > S/DTP E = min{1, N*DTP/S}

Selective Repeat
Introduction

 Retransmission strategy (ARQ)
 No need to retransmit all after loss
 Buffer requirements at receiver
 Wheat and rice analogy!

– Selective repeat is wheat
– Older is better

Performance Amidst Packet Loss

Efficiency without Errors

 Same as Go Back N
 If N > S/DTP E = min{1, N*DTP/S}

Efficiency with Errors

 Only packets containing errors will be retransmitted
 E= 1 - P

Implications of buffer size
 Buffer limit at sender

― Number of un-ACKed packets at sender =< W
 Buffer limit at receiver

― Number of un-ACKed packets at sender cannot differ by more than W

RTT Estimation and Timeout
Fixed Window
First case
WS/R > RTT + S/R

 ACK for first segment in window returns before window’s worth of data sent

Delay Performance with Fixed Window

Fixed Window
Second case
WS/R < RTT + S/R

 Wait for ACK after sending window’s worth of data sent
 K is the number of windows that cover the object

Delay Performance with Fixed Window

TCP Timeout Value
 Longer than RTT
 As RTT varies

― Too short: premature timeout,
― Unnecessary retransmissions
― Too long: slow reaction to segment loss

Estimating RTT
 SampleRTT Measured time from segment transmission until ACK receipt
 Ignores retransmissions
 EstimatedRTT is “smoother”
 Averages several recent measurements, not just current SampleRTT

Relationship Between TimeOut and Estimated RTT

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT
TimeoutInterval = EstimatedRTT + 4*DevRTT

Reliable Data Transfer

 TCP offers data reliability
 In case data is lost or corrupted

― Error Control
― Flow control
― Congestion control

 Reliability at the cost of throughput
 With slow start and FRFR, throughput is given by

LRTT

MSS1.22

Reliability Services

Handling Loss

Early TimeOut

Delayed Ack

Flow Control
Introduction

 Receiver throttles the sender by advertising a window
– Not larger than the amount of data that it can buffer

 TCP on the receive side must keep
LastByteRcvd − LastByteRead ≤ MaxRcvBuffer

Implication

 If local process reads data just as fast as it arrives
 Causes LastByteRead to be incremented at the same rate as LastByteRcvd
 Advertised window stays open

 (AdvertisedWindow = MaxRcvBuffer)
 If receiving process falls behind, advertised window grows smaller with every segment that

arrives, until it eventually goes to 0

Advertised Window

Sender Window

LastByteSent − LastByteAcked ≤ AdvertisedWindow

Effective Window

EffectiveWindow = AdvertisedWindow − (LastByteSent − LastByteAcked)

Relationship between Max_Send and Max_Receive Buffer

LastByteWritten − LastByteAcked ≤ MaxSendBuffer

TCP Connection Management
Cost and Feasibility Model
Cohen, Edith, Haim Kaplan, and Jeffrey Oldham. "Managing TCP connections under persistent
HTTP." Computer Networks 31.11 (1999): 1709-1723.
Kurose and Ross. “Computer Networking Top-Down Approach Featuring the Internet”.

Holding Time

 Upon receiving an HTTP request r , the server decides on a holding-time interval T(r)
 The server then leaves the connection open for at most T(r) seconds from the moment it

received r
 If a new request r' arrives within the next T(r) seconds, then a new holding-time interval

T(r') is in effect
 Otherwise the connection is terminated after T(r) seconds

TCP State Transition

TCP Client Lifecycle

TCP Server Lifecycle

Connection Management Policy (1 of 3)

 Policy A is an algorithm that determines an interval T(r) for every request r
 Consider a request sequence s
 The profit (number of hits), PA of a policy A on s is the number of requests that did not

require opening a new connection
 The number of misses, MA of A on s is number of requests that require opening a new

connection
 The open-cost, HA of a policy A is total time connections are open

What to model?

 Trade-offs between open-cost and number of misses

Principles of Congestion Control
References
RFC 2914: Congestion Control Principles
Kurose and Ross. “Computer Networking Top-Down Approach Featuring the Internet”.

Introduction

 Too many sources sending too much data too fast for network to handle
 Manifestations
 Lost packets

― buffer overflow at routers
 Long delays

― Queuing in router buffers

Infinite Buffer Scenario

Effects of Congestion

 Large delays when congested
 Maximum achievable throughput

Finite Buffer Scenario

Effects of Congestion

a. No loss
b. Perfect loss
c. Imperfect loss

Combat Strategies (1 of 2)
End-end congestion control

 No explicit feedback from network
 Congestion inferred from end-system observed loss, delay
 Approach taken by TCP
 Network-assisted congestion control
 Routers provide feedback to end systems
 Single bit indicating congestion (SNA, DEC bit, TCP/IP ECN, ATM)
 Explicit rate sender should send at

R/

R/
�i

�o

ut

b.

R/

R/
�in

�o

ut

a.

R/

�i

�o

ut

c

R/

R/

ATM ABR Congestion Control
References
Kurose and Ross. “Computer Networking Top-Down Approach Featuring the Internet”.

Introduction

 Available Bit Rate (ABR), a service used in ATM networks
 Source and destination don't need to be synchronized
 ABR does not guarantee against delay or data loss
 Allow network to allocate available bandwidth fairly over present ABR sources

Operation

 Elastic service
 If sender’s path is under loaded
 Use available bandwidth
 If sender’s path congested
 Sender throttled to minimum guaranteed rate

Combat Congestion

 Two-byte ER (explicit rate) field in RM cell
 Congested switch may lower ER value in cell
 Sender’s send rate thus minimum supportable rate on path
 EFCI bit in data cells is set to 1 in congested switch
 If data cell preceding RM cell has EFCI set, sender sets CI bit in returned RM cell

TCP Congestion Control
References
Kurose and Ross. “Computer Networking Top-Down Approach Featuring the Internet”.

Introduction

 End-end control (no network assistance)
 Sender limits transmission

LastByteSent-LastByteAcked<= CongWin
 CongWin is dynamic, function of perceived network congestion

Operation
 Loss event = timeout or 3 duplicate acks
 TCP sender reduces rate (CongWin) after loss event
 Three mechanisms

― AIMD
― Slow start
― Conservative after timeout events

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

Leaky Bucket and Token Bucket

Leaky Bucket

 Buffering of the traffic to help manage and control the flow of traffic onto and through the
network

 “Leaky” means buffer that is constantly flowing

Operation

 Traffic enters into the buffers and is tagged, based on the amount of packets allowed by the
carrier

 If the user exceeds the amount of packets flow per increment then the buffer is filled and
begins to empty out the bottom side at a constant rate

Leaky Bucket Algorithm

Token Bucket
 Many traffic sources can be defined by token bucket scheme
 Provides concise description of load imposed by flow
 Easy to determine resource requirements

Operation

 Provides input parameters to policing function
 IP packet may be processed if sufficient octet tokens to match the IP data number of tokens
 If insufficient tokens available, the packet is relegated to best-effort service
 To transmit a packet through router, one token must be removed
 If token bucket is empty, packet is queued waiting for next token
 If there is backlog of packets & an empty bucket, packets emitted smoothly

Quality of Service
Background

 Broadband IP packet networks are multiservice, all-purpose communications platforms
 Spurred QoS efforts
 Simplest strategy to the one-size-fits-all best-effort service in today’s Internet: divide traffic

into classes
 Provide different levels of service to these different classes of traffic

Introduction

 QoS a non-issue for circuit-switched networks
 Layer 2 and 3 QoS approaches
 ATM and Frame Relay provide L2 QoS
 Provide circuit-like emulation
 Traffic agreements
 Traffic control
 Connection admission control
 Congestion notification
 Fragmentation

QoS at Network Layer
 IP QoS is concerned with end-to-end internetwork
 With every hop L3 QoS parameters mapping to L2 QoS
 Type of Service (TOS) field provides initial IP network class of service mechanism
 Three precedence bits classify eight categories of services
 Lower precedence dropped for higher precedence in congestion
 Network equipment vendors rarely provide precedence bits usage

QoS Models

 Two QoS models for IP packet networks
 IntServ

― Simulate “virtual circuit” of ATM or frame relay on L3
― Sets up an end-to-end route with fixed QoS parameters

 DiffServ
― Defining several common classes of service
― Each with associated queue priorities and drop precedence on a per-hop basis

Hard vs Soft QoS

 Hard guarantee applications will receive its requested quality of service (QoS) with certainty
 Soft guarantee application will receive its requested quality of service with high probability

Fair Queues
First In First Out

Motivation for FQ

 During periods of congestion, FIFO queuing benefits UDP flows over TCP flows
 A bursty flow can consume the entire buffer space of a FIFO queue
 PQ totally favours TCP over UDP

Introduction

 FQ is foundation for a scheduling disciplines designed to ensure that each flow has fair
access to network resources

 Prevents a bursty flow from consuming undue bandwidth share
 Also called per-flow or flow-based queuing

Operation

 Packets are first classified into flows by the system
 Assigned to a queue that is specifically dedicated to that flow
 Queues are then serviced one packet at a time in round-robin order
 Empty queues are skipped

Fair Queuing with Classifier

Benefits

 Primary benefit of FQ is extremely bursty or misbehaving flow does not degrade QoS
delivered to other flows

 Each flow is isolated into its own queue
 If a flow attempts to consume more than its share of BW, its queue is affected

Performance

 Allocation of single resource amongst N users
 Total resource µTotal
 Each user i requests ρi
 Each user i receives µi Conditions:
 No user receives more than its request
 No other user satisfying condition 1 has a higher minimum allocation
 Above condition remains recursively true as we remove the minimal user & reduce total

resource
 µTotal« µTotal –µi
 Conditions:
 µi= Min(µFair –ρi)
 Above condition remains recursively true as we remove the minimal user & reduce total

resource

μTotal= ∑ μ i

Priority Queues
Motivation

 Designed to provide a relatively simple method of supporting differentiated service classes
 To provide respective services to

– Interactive traffic
– Voice
– Video
– And best effort

Operation

 Packets classified and placed into different priority queues
 Packets scheduled from the head of a queue only if all queues of higher priority are empty
 Within each of the priority queues, packets are scheduled in FIFO order

Priority Queuing with Classifier

Priority Queuing with Classifier

Trj : Resident time of an item j in queue k
Tsi : Service time of an item i i.e., processing time by the system

Variants

 Strict priority queuing
– packets in a high-priority queue are always scheduled before packets in lower-

priority queues
 Rate-controlled priority queuing

– High-priority queue scheduled before lower-priority queues
– Only if the amount of traffic in the high-priority queue stays below a user-configured

threshold

Static Window Modeling
Assumption

 Assume one link between client and server of rate R
 S: MSS (bits)
 O: object size (bits)
 No retransmissions (no loss, no corruption)
 Fixed congestion window, W segments

A simple one-link network connecting a client and a server

Operation (1 of 2)

 Server not permitted to have more than W unacknowledged outstanding segments
 Server receives request from client
 Server sends W segments back-to-back to the client
 . Server then sends one segment into the network for each acknowledgement it receives
 Server continues to send one segment for each acknowledgement until all of the segments of

the object have been sent

First Case

 Server receives ACK for first segment of first window before completing transmission of
first window

 WS/R > RTT + S/R
Delay = 2RTT + O/R

Static Window Modeling—2
A simple one-link network connecting a client and a server

Second Case
 Server transmits first window's worth of segments before the server receives ACK for first

segment in the window
WS/R < RTT + S/R

 It is a scenario where the propagation delay dominates transmission time

Delay = 2RTT + O/R+ (K-1)[S/R + RTT – WS/R]

Dynamic Window Modeling
TCP Congestion Dynamics

Assumptions
 Server starts with congestion window of one segment
 When it receives an ACK for segment, it increases its congestion window to two segments
 Sends two segments to the client
 Congestion window doubles every RTT

Example

 O/S = 15 segments
 K = 4 windows
 Q = 2
 P = min{K-1,Q} = 2

Server idles P=2 times

End-to-End Windows
Limitations

 Cannot guarantee a minimum rate for a session
 Not suited for

– Voice and video
 Window size tradeoff requirements

– Limit no. of packets in subnet
– Full-speed transmission and max throughput

Delay-Throughput Trade-off

Node-by-Node Windows
Unfairness Problem in End-to-end
Long sessions with larger windows take precedence in intermediate devices

Virtual Circuit Windowing

 A separate window for every VC & pair of adjacent nodes along path of VC Main idea
 Receiver avoids accumulation of large no. of packets into its memory

– Slows down permit returns to sender

Backpressure Effect in VCs

Round Robin + Node-by-node

Little's Theorem
Big Questions

 What is the avg no. of customers in the system?
– The "typical" no. of packets either waiting in queue or undergoing service

 What is the avg delay per customer?
 The "typical" time a packet spends waiting in queue plus the service time

Definition
N= l´T

 N = No. of customers
 l = Arrival rate
 T = Time spent by customers (packets) in the system

Interpretation

 Little's Theorem expresses crowded systems
 Large N associated with long customer delays (T) & vice versa
 Not influenced by arrival process distribution, service distribution, service order, etc.

Probabilistic Little's Theorem
Time average

 The time average of a function is found by evaluating a measure space with the average
taken over a time, ΔT

 Pn(t) = Probability of n customers in the system at time t

Statistical (Ensemble) average

 Defined as the number that measures the central tendency of a given set of numbers
 A number of different averages
 Mean, median, mode and range

Probabilistic interpretation

 Little's Theorem admits also a probabilistic interpretation for stationary process
– Time avg replaceable with statistical avg

Application

 Little's Theorem becomes applicable to deterministic and probabilistic systems
– a situation does not exist where the theorem does not hold
– Often termed as law

Little's Theorem; Applications
End-to-end flow control

 Recall that end-to-end windows fail to provide adequate control of packet delay
 Little's theorem helps understand the relation

– Window size
– Delay
– Throughput

Average delay per packet

 n flow controlled sessions in the network with fixed window sizesW1,...Wn
 b = whether piggybacking supported or not
 l = throughput (total accepted input rate of sessions)

Throughput and Delay vs Active Flows
When network is heavily loaded,avg delay per packet increases approximately linearly with the
number of active sessions—the total throughput stays approximately constant

Arrivals as Poisson
M/M/1 system

 The M/M/1 queuing system consists of a single queuing station with a single server
– Communication context: a single transmission line

 Probability distribution of the service time is exponential with mean 1/m sec

Arrivals

 Customers (packets) arrive according to a Poisson process
 A(t) is a counting process that represents the total number of arrivals that have occurred

from to time t

Poisson Process

 A Poisson process is generally considered to be a good model for the aggregate traffic of a
large number of

– Similar and
– Independent users

 Merges n independent & identically distributed arrival processes
 Each process has arrival rate l/n
 So the aggregate process has arrival rate l
 No. of arrivals occurring in disjoint time intervals are independent
 No. of arrivals in any interval of length t is Poisson distributed with parameter lt

Poisson Distribution

Service Statistics
What is service?

 The set of activities performed at the receiving device
 Router

– MAC processing
– Lookup
– Forwarding decision

 Switch
– Header processing
– Port allocation table

Service distribution

 Sn is the service time of the nth customer
 Customer (packet) service times have an exponential distribution with parameter m
 m is also called service rate
 Represents the rate (in customers served per unit time) at which the server operates when

busy
 Service times are mutually independent
 Also independent of all inter-arrival times
 Density function
 Service distribution

\

Commentary

 In the context of a packet transmission, independence of inter-arrival and service times
implies,

– Length of an arriving packet does not affect the arrival time of the next packet
Exponential Distribution
Memorylessness

 Additional time needed to complete a customer's service in progress is independent of when
the service started

 Time up to the next arrival is independent of when the previous arrival occurred

Arrival Occupancy Distribution
System under change

 Users (packets) come and leave the system
– System under continuous change of occupancy

 It is possible that the times of customer arrivals are in some sense nontypical

Non-Typical Arrival

Typical Arrival

Occupancy distribution
 For M/M/1 systems
 pn = an for n =0,1,...
 Arriving customer finds the system in a "typical" state
 Future arrivals are independent of the current number in the system

Simulating TCP Receive Buffer
Operation

 RFC 1122 identifies host implementation requirements
― Includes receive buffer to cache sequenced data not yet forwarded

INET Support
 It stores bytes and not segments
 Few implementations store segments on the retransmission queue, and others store only the

data bytes

Receiver Window

LastByteSent – LastByteAcked

Receive Buffer Support

 inet::tcp::TCPReceiveQueue::getAmountOfBufferedBytes ()
 Returns the number of bytes currently buffered in queue
 inet::tcp::TCPReceiveQueue::getAmountOfFreeBytes (uint32 maxRcvBuffer)
 Returns the number of bytes currently free (=available) in queue

inet::tcp::TCPReceiveQueue Class

Departure Occupancy Distribution

System under change

 Users (packets) come and leave the system
– System under continuous change of occupancy

 It is possible that the times of customer departures are in some sense nontypical

Non-Typical Departure

Typical Departure

Occupancy distribution

 For M/M/1 systems
 dn = an for n =0,1,...
 For each time the number in the system increases from n to n+1 due to an arrival, there will

be corresponding decrease from n+1 to n due to departure

TCP BER Performance
Operation

 RFC 2581 identifies identifies the operation in the wake of TimeOut

TCPReno::recalculateSlowStartThreshold() [protected, virtual]
{
 // set ssthresh to flight size/2, but at least 2 MSS
 // (the formula below practically amounts to ssthresh=cwnd/2 most of the time)
 uint flight_size = std::min(state->snd_cwnd, state->snd_wnd);
 state->ssthresh = std::max(flight_size/2, 2*state->snd_mss);
 if (ssthreshVector) ssthreshVector->record(state->ssthresh);
}

tcp_old::TCPReno Class Reference

Problem Set 2
TCP TimeOut
Suppose that the five measured SampleRTT values are 106, 120, 140, 90 & 115 ms. Compute the
EstimatedRTT after each of these SampleRTT values is obtained, using a value of α = 0.125 &
assuming that the value of EstimatedRTT was 100 ms just before the first of these five samples
were obtained. Compute also the DevRTT after each sample is obtained, assuming a value of β =
0.25 and assuming the value of DevRTT was 5 ms just before the first of these five samples was
obtained. Last, compute the TCP TimeoutInterval after each of these samples is obtained.

TCP Flow and Congestion Control
Host A is sending an enormous file to Host B over a TCP connection. Over this connection there is
never any packet loss and the timers never expire. Denote the transmission rate of the link
connecting Host A to the Internet by R bps. Suppose that the process in Host A is capable of sending
data into its TCP socket at a rate S bps, where S = 10 · R. Further suppose that the TCP receive
buffer is large enough to hold the entire file, and the send buffer can hold only one percent of the
file. What would prevent the process in Host A from continuously passing data to its TCP socket at
rate S bps? TCP flow control? TCP congestion control? Or something else? Elaborate.

Virtual Circuit Networks
Basics

 Source-to-destination paths behave much like telephone circuit
 Performance guaranteed
 Network actions along source-to-dest path needed

Operation
 Call setup, teardown for each call before data can flow
 Each packet carries VC identifier
 Every router on source-dest path maintains “state” for each passing connection
 Resources (bandwidth, buffers) allocated to VC

Packets Along the Same Path

Two Links Network Example

Stability Issues in VCs

 Arrival rate on link 1 using the shortest path
 Only one path is used for routing at anyone time if the shortest path update period is much

larger than the time required to empty the queue of waiting packets at the time of an update

Datagram Networks
Basics

 Two packets of the same user pair can travel along different routes
 A routing decision is required for each individual packet

Packets Along Different Paths

Complexity
 Each iteration of link state routing protocols
 n(n+1)/2 comparisons: O(n2)
 More efficient implementations possible: O(nlogn)

Oscillations

 Given these costs, finding new routes resulting in new costs

Input Processing
Basics

 Two key router functions:
 Run routing algorithms/protocol (RIP, OSPF, BGP)
 Forwarding datagrams from incoming to outgoing link

Router Functionality

Router Input

Distributed Switching

 Given datagram dest., lookup output port using forwarding table in input port memory
 Complete input port processing at ‘line speed’

Input port queuing
 Fabric slower than input ports combined
 Queuing may occur at input queues

Input Port Queuing

Output Processing
Operations

 Buffering required when datagrams arrive from fabric faster than the transmission rate
― If Rswitch is N times faster than Rline

 Scheduling discipline chooses among queued datagrams for transmission

Router Output Interface

Output Port Buffering

How much to Buffer?
 RFC 3439: average buffering equal to “typical” RTT (say 250 msec) times link capacity C
 C = 10 Gpbs link
 2.5 Gbit buffer
 With N flows, buffering equal to

Head of Line Blocking
Input Port Overflow

 Fabric slower than input ports combined queuing may occur at input queues
 Queuing delay and loss due to input buffer overflow!

Head of Line

 Queued datagram at front of queue prevents others in queue from moving forward

Scenario

Random Early Detection
Drop Tail

 Conventional tail drop algorithm
 A router buffers as many packets as it can
 Simply drops the ones it cannot buffer
 If buffers constantly full, network is congested
 Tail drop distributes buffer space unfairly among traffic flows

Active Queue Management

 When buffer becomes full or gets close to becoming full
 AQM is intelligent drop network congestion of network packets inside a buffer of NIC
 Often with the larger goal of reducing

Drop Tail

 Conventional tail drop algorithm
 A router buffers as many packets as it can
 Simply drops the ones it cannot buffer
 If buffers constantly full, network is congested
 Tail drop distributes buffer space unfairly among traffic flows

RED Operation

 Monitor avg queue size & drop packets based on probabilities
 If buffer empty, all incoming packets accepted
 As queue grows, P for dropping incoming packet grows
 When buffer full, P = 1 all incoming packets dropped

Operation:

RED with In & Out (RIO)
Background

 Similar to RED, but with two separate probability curves
 Has two classes, “In” and “Out” (of profile)
 “Out” class has lower minimum threshold
 Packets are dropped from this class first
 As avg queue length increases, “In” packets are dropped
 Since best-effort is included in the “Out” class, assured traffic can starve best-effort

Operation
For each packet arrival
if it is an In packet
calculate the average In queue size avg_in ;
calculate the average queue size avg_total ;
If it is an In packet.
if min_in < avg_in < max_in
calculate probability P in
with probability P in , drop this packet;
else if max_in < avg_in
drop this packet.
If it is an Out packet
if min_out < avg_total < max_out
calculate probability Pout;
with probability Pout drop this packet;
else if max_out < avg_total
drop this packet

Operation

Routing Algorithms
Interplay

 Routing algorithm determines end-end-path through network
 Forwarding table determines local forwarding

– at this router
– for IP destination address in arriving packet’s header

Graph abstraction

 Graph: G = (N,E)
 N = set of routers = { u, v, w, x, y, z }
 E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Cost

 Cost could always be 1
 Or inversely related to bandwidth
 Or inversely related to congestion
 Cost of path
 (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

Algorithms
Key question: What is the least-cost path between u and z?
Routing algorithm: Algorithm that finds that least cost path

Complexity of Link State
Global Routing

 All routers have complete topology, link cost information
 Every node constructs a map of the connectivity to the network in the form of a graph

Shows which nodes are connected to which other nodes

Link State

 Each node independently calculates best path from it to every possible destination in the
network

 The collection of best paths will then form the node's routing tables
 Iterative: After k iterations, know path to k destination

Complexity

 For n nodes
 Each iteration: need to check all nodes, w, not in route discovered set N
 Full-mesh: n(n+1)/2
 Omega Notation: O(n2)

Complexity of Distance Vector
Distributed Routing

 Router knows physically-connected neighbors + link costs to neighbors
 Iterative process of computation
 Exchange of info with neighbors

Key Idea

 From time-to-time, each node sends its own distance vector estimate to neighbors
 when x receives new DV estimate from neighbor, it updates its own DV using B-F equation

Count to Infinity Problem
Link Cost Changes

 Node detects local link cost change
 Updates routing info
 Recalculates distance vector
 If DV changes, notify neighbours

Good news

 At time t0, y detects the link-cost change, updates its DV,
 & informs neighbors
 At time t1, z receives the update from y and updates its table
 It computes new least cost to x & sends neighbors its DV
 At time t2, y receives z’s update, updates
 y’s least costs do not change, y does not send message to z

Bad News!

 Good news travels fast
 Bad news travels slow
 Takes 44 iterations before Z eventually computes its path via Y to be larger than 50

Bad News Causes Loops

At time t0 Y detects the link cost change (the cost has changed from 4 to 60). Y computes its new
minimum cost path to X to have a
cost of 6 via node Z. Of course, we can see that this new cost via Z is wrong

But the only information node Y has is that its direct cost to X is 60 and that Z has last told Y that Z
could get to X with a cost of 5. So in order to get to X, Y would now route through Z, fully
expecting that Z will be able to get to X with a cost of 5

So in order to get to X, Y would now route through Z, fully expecting that Z will be able to get to X
with a cost of 5. As of t1 we have a routing loop—in order to get to X, Y routes through Z, and Z
routes through Y.

A routing loop is like a black hole—a packet arriving at Y or Z as of t1 will bounce back and forth
between these two nodes forever or until the routing tables are changed

Poisoned Reverse
Need

 Bad news travels very slow, especially if the cost change is large
 Ping-pong effect due to looping is undesirable
 Nodes are blindly following what is told to them
 Solution: Tell a small lie!

– Poison the link
Operation

 If Z routes through Y to get to X
 Z tells Y its (Z’s) distance to X is infinite (so Y won’t route to X via Z) table
 This lie prevents the loop

Performance

 Poisoned reverse does not work if more than 3-neighbors are involved in looping
 Other techniques such as packet or broadcast ID are incorporated

Hierarchical Routing; Complexity
Need

 All routers identical with a flat network is not true in practice
 Routers vary

– Connectivity
– Bandwidth
– Resources & Cost

Each network admin wants autonomy
Solution: Make a hierarchical relationship between them.

Methodology

 Collect routers into regions, “autonomous systems” (AS)
 Each AS within an ISP
 ISP may consist of one or more ASes
 In same AS run same routing protocol
 “intra-AS” routing proutersrotocol

– routers in different
 AS run differentintra-AS routing protocol

 Gateway router:
– At “edge”
– Has link to router in another AS

 Forwarding table configured by both intra- and inter-AS routing algorithm
 intra-AS sets entries for internal dests
 inter-AS & intra-AS sets entries for external dests

Elastic Aggregates & TE
A Generalized Scenario

Traffic Aggregate

 Suppose that a request arrives for downloading a file of size V bytes
 V bytes must be transferred from s to t
 Number of download requests arriving over T interval is N(T)

V1 , V2 , . . . , VN(T)

Average Requests

 Over the interval T, if EV is the average file size
 Average requests for an aggregate amount

Offered Load

 Dividing both sides by T, we get
– Avg rate at which V(T) grows with time
– Avg rate at which download requests arrive

ρ = λ EV
 ρ = Offered load expressed in bytes/sec
 λ = Average arrival rate of download requests

 Optimal Routing
Feasible Routing

 The sum of all flows on a link should stay below the link capacity
x(1) + x(2) + · · · + x(K) ≤ C

 Spare capacity
z = C − (x(1) + x(2) + · · · + x(K))

Optimization Problem

 Given a network and a set of demands, there may be many feasible routes
 To choose one route from a set, define an objective function
 Choose the route that optimizes the objective function
 Optimal routing is the one that maximizes the smallest spare capacity
 Reasonable, because any link in the network has a spare capacity of at least z
 Increases chance that a future demand between any pair of nodes finds sufficient free

capacity.

Limitations of Min Hop Routing
Scenario

Shortest path = Min hop routing

 If weight along each edge (link) set to 1
 Total bandwidth on a route is d × H
 Hmin takes min resources
 Least resource consumption
 H = no. of hops on chosen route
 Demand requires bandwidth d

Disadvantages

 Consider that x uses a and b to reach y
 It results in non-utilization of direct hops between them
 Other source-destination pairs would never use these resources
 Network is partitioned

Formulation of Routing Problem
Shortest path is most congested

 One or more links in a network get congested
– Form sub-paths on shortest path

 Unused bandwidth is available on other links

Routing as a User-Network-Traffic-QoS Phenomenon

Defining Routing Problems
 Shortest-widest path
 Widest-shortest path
 Least-loaded routing
 Maximally loaded routing
 Profile-based routing

.
Minimum Interference Routing
Route interference

 Any chosen route from a router a to another router b can possibly reduce the capacity
available for demands between other node pairs

– Often a phenomenon in ISP backbone sharing

Max Flow

 Maxflow (s, t) is a scalar
 Indicates the maximum amount of traffic that can be sent from s to t
 Exploits all possible paths through the network

– An upper bound on the total bits/sec that can be sent from s to t

Minimum interference

 Idealy zero interference
 If maxflow (s, t) remains unchanged
 Path used for the (a, b) demand does not share any link with the set of paths available for (s,

t)
 Non-zero minimum interference
 Paths share minimum hops

Problem Formulation

 After the (a, b) demand has been routed, the smallest maxflow value among all other (s, t)
pairs is maximized

Example
Consider four flows, w.r.t (a, b).

 (30, 15, 6) corresponds to path P1 for (a, b)
 (12, 19, 8) corresponds to path P2 for (a, b)
 (3, 12, 16) corresponds to path P3
 Route P 2 is the minimum interference route for the (a, b) demand

QoS Routing
Single Stream

 A single stream session comes with
 A given bandwidth requirement
 A specified end-to-end delay requirement
 Arrives at the network
 QoS routing is to find a “good” route for the session

Network Operator

 Wider and holistic objectives
– Minimization of total bandwidth consumed
– Maximization of the smallest spare capacity on the links of the network

Tradeoff
 End to end
 Hop by hop
 Two QoS models for IP packet networks
 IntServ

– Simulate the “virtual circuit” of ATM or frame relay on layer-3
 Sets up an end-to-end route with fixed QoS parameters
 DiffServ
 Defining several common classes of service with associated queue priorities and drop

precedence on a per-hop basis hops

Nonadditive Metrics
Definition

 Nonadditive link metrics cannot be summed over the links of a path to obtain the path metric
 Must be aggregated through another way
 Example: Bandwidth
 Requires d units of BW
 The least available link bandwidth along the path should be d

Application

 Wider and holistic objectives
– Minimization of total bandwidth consumed
– Maximization of the smallest spare capacity on the links of the network

Implications
 What if no path exists?

– S-D get isolated
 What if more than one path exists?
 BW measurement freq & accuracy is a tradeoff
 BW measurement is not exact

Solution
 Choose path with highest Prob of having d units

Additive Metrics; RMB
Definition

 Additive link metrics are summed over the links of a path to obtain the path metric
 Example: end-to-end delay
 If eah link offers t units of delay
 The total links N delay is Nt

Rate-based Mux

 A multiplexer takes input from various streams of traffic and puts them out on a single line
– Used fixed sized frames

 Rate matching of heterogeneous sources is required
 Example: WFQ

Weighted Fair Queuing

 WFQ supports fair distribution of BW for variable-length packets
– Weighted bit-by-bit round-robin scheduling

 Fair allocation of bandwidth
 Each queue receives its configured share of output port bandwidth

Finding Feasible Routes
Network Model

 G(N , L) is the network
 N is the set of nodes
 L is the set of links
 ξ1 = sum of prop delay & maximum TXN time on link l
 Cl be the available capacity on link
 K = source–destination pairs in the network
 Consider a path P through the network between a source router and a destination router
 Capacity on path P = minl∈P Cl
 H(P) = No. of hops (i.e., links) on path P
 Consider a path P through the network between a source router and a destination router
 Capacity on path P = minl∈P Cl
 H(P) = No. of hops (i.e., links) on path P

Problem

 Find, on connection arrival, a route connecting the SD pair
– Rate to be allocated on that route
– Connection’s delay and rate requirements are satisfied
– Capacity constraints are not violated

Upper bound on delay

 Required end-to-end delay
 If all the paths are computed

– Multi-commodity problem
– NP hard

Upper Bound on Performance
Route and Rate Allocation (RRA)

 λ connections distrib over I classes given to G(N , L) network
 ρikλ = number of class i connections for SD pair k

 If not all connections can be admitted due to capacity, select a subset for admission

Problem Formulation

 What is the maximum value (revenue) of the minimum weighted carried traffic (Wmin) that
any RRA algorithm can extract from the network?

Offline Routing (Integer Linear Program)

 sik = carried traffic of class i for SD pair k
 nij = No. of class i connections carried on path j

Non-Rate-Based Multiplexers
Additive Metric

 Non-rate muxes are unlike rate-based
– Rate requirement is relieved

 Other requirements emerge
– Bit error rate
– Packet Loss Probabilities
– Preferential links or paths

Multi-constrained Feasibility Problem

 m additive constraints are given
 Objective: find a path that satisfies all m constraints

Multi-constrained Feasibility Problem

 m additive constraints are given
 Objective: find a path that satisfies all m constraints
 In case several paths satisfying all m constraints are available
 No criterion specified for choosing one from this set of paths

– Not defined as an objective function in the optimization problem

Heuristic Interpretation As Constrained Region

λ(P) = α1λ1(P) + α2λ2(P)
m path metric values λ 1(P), ..., λi(P),...,λm(P), map to a single real value that represents the effective
path length.

Efficient Longest Prefix Match
Operation at Router

 Perform a logical AND of netmask and 32-bit destination IP address in the packet
 If result matches network prefix in the forwarding table entry,
 Next hop is the corresponding entry in table.
 Route lookup a search problem

Longest Prefix Match

 Multiple matches of forwarding table entries to a destination IP address are handled through
LPF

 If there are multiple matches to an IP address
– One matching longest network prefix is returned by the lookup function

Binary Trie

 Forwarding table organized as binary trie
– Essentially a binary tree

 Each vertex at level k corresponds k bits prefix
 Each vertex has 2 children

– k bit prefix expanded to (k + 1) bit prefix
 Route lookup essentially involves tracing 32-bit destination address in the trie to find the

vertex
 The entry in the forwarding table that matches the longest prefix

Sample Forwarding Table & Representation

Trie Traversal for 1000000

Level-Compressed Tries
Traversal Time

 Binary Tree is a graph
 Complexity of depth-first traversals is O(n+m)
 Complexity then becomes O(n + n-1), which is O(n)

Level Compress

 Rather than define a level for each bit of the address
– Define a level for groups of contiguous bits

 A simple case of level compression is to have a level for every K bits
 For N bits in address, then the number of levels is N/K
 Instead of two-way branch from each vertex of the trie 2 K-way branch
 Another view of level compression is to say that a subtree of height k is compressed into one

level

Level Compression or Prefix Expansion

Trie (Retrieval) Traversal for 1000000

Flooding; ARPANET Algorithm
Usage of Flooding

 An algorithm whereby a node broadcasts a topological update message to all nodes
 Sending the message to its neighbors

– Which in tum send the message to their neighbors, and so on

Indefinite Flood

 Transmission of messages never terminates
– Rule: node that receives a message relays it to all of its neighbors except from which

it received

Level Compress

 Instead of two-way branch from each vertex of the trie
– 2 K-way branch

 Another view of level compression is to say that a subtree of height k is compressed into one
level

Indefinite Flood Problem

 A failure of link (1-2) is communicated
to node 3 which triggers an indefinite
circulation of the failure message along
the loop (3,4,5) in both directions

ARPANET Solution

 Store enough information in update messages and network nodes
 To ensure that each message is transmitted by each node only a finite number of times

– Preferably only once

 ARPANET used Sequence Numbers

Operation

 When a node j receives a message that originated at some node i
 Check if its seq no. > seq no. the message last received from i
 Yes: message stored in memory
 Transmit to all its neighbors except sender
 No: discard

Flooding w/o Periodic Updates
Redundancy of Periodicity

 Periodic updates needed because if some updates are sent but not incorporated
 Node crashes
 Transmission errors

– Routing tables become inconsistent
 However under normal circumstances

– Not needed

Need-based Updates

 Zero seq no allowed only when node is recovering from a crash
– Situation where all of the node's incident links are down
– And it is in the process of bringing links up

 Separate seq no. for each origin node

The Problem

 Link (2,3) goes down, then link (1,2) goes down, and then link (2,3) comes up while node 2

resets its sequence number to zero
 Nodes 2 and 3 exchange their (conflicting) view of the status of the directed links (1 ,2) and

(2, 1)
 Both nodes discard each other's update message since it carries a sequence number zero

which is equal to the one stored in their respective memories.

The Solution

 Depending on the lexicographic rule used
– Either the (correct) view of node 2 regarding link (2, 1) will prevail right away
– Or else node 2 will issue a new update message with sequence number 1 and its view

will again prevail

Broadcast without Seq. Nos.
Redundancy of Periodicity

 Periodic updates needed because if some updates are sent but not incorporated
 Node crashes
 Transmission errors

– Routing tables become inconsistent
 However under normal circumstances

– Not needed

Need-based Updates

 Zero seq no allowed only when node is recovering from a crash
– Situation where all of the node's incident links are down
– And it is in the process of bringing links up

 Separate seq no. for each origin node

The Problem

 Link (2,3) goes down, then link (1,2) goes down, and then link (2,3) comes up while node 2

resets its sequence number to zero
 Nodes 2 and 3 exchange their (conflicting) view of the status of the directed links (1 ,2) and

(2, 1)
 Both nodes discard each other's update message since it carries a sequence number zero

which is equal to the one stored in their respective memories.

The Solution

 Depending on the lexicographic rule used

– Either the (correct) view of node 2 regarding link (2, 1) will prevail right away
– Or else node 2 will issue a new update message with sequence number 1 and its view

will again prevail

Problem Set 1
Topology for SPF Algorithm

Routing Algorithm Complexity
With the indicated link costs, use Dijkstra’s shortest-path algorithm to compute the shortest path
from x to all network nodes.

Inter-AS Connectivity

Operation of Inter-AS Routing Protocols
Consider the network. Suppose AS3 and AS2 are running OSPF for their intra-AS routing protocol.
Suppose AS1 and AS4 are running RIP for their intra-AS routing protocol. Suppose eBGP and
iBGP are used for the inter-AS routing protocol. Initially suppose there is no physical link between
AS2 and AS4.

Operation of Inter-AS Routing Protocols
a. Router 3c learns about prefix x from which routing protocol: OSPF, RIP, eBGP, or iBGP?
b. Router 3a learns about x from which routing protocol?
c. Router 1c learns about x from which routing protocol?
d. Router 1d learns about x from which routing protocol?

Problem Set 1
Switching Fabric Performance in Routers
If the maximum queuing delay is (n–1)D for a switching fabric n times faster than the input line
rates. Suppose that all packets are of the same length, n packets arrive at the same time to the n
input ports, and all n packets want to be forwarded to different output ports. What is the maximum
delay for a packet for the (a) memory, (b) bus, and (c) crossbar switching fabrics?

Subnetting
Consider a subnet with prefix 128.119.40.128/26. Give an example of one IP address that can be
assigned to this network.

Subnet Prefixes
Suppose an ISP owns the block of addresses of the form 128.119.40.64/26. Suppose it wants to
create four subnets from this block, with each block having the same number of IP addresses. What
are the prefixes (of form a.b.c.d/x) for the four subnets?

Fragmentation & Reassembly
Consider sending a 2400-byte datagram into a link that has an MTU of 700 bytes. Suppose the
original datagram is stamped with the identification number 422. How many fragments are
generated? What are the values in the various fields in the IP datagram(s) generated related to
fragmentation?

Simulate QoS Routing
Operation of QoS Routing
Each class of traffic needs a minimum bandwidth path. To avoid oscillations by, QoS routing
modifies the routing algorithms.

Key idea: Established routes continues to use the previous links till new paths (or links) are
discovered

Assumptions

Decision

Support in INET

 Basic DiffServ support
 Current queue modules

– DropTailQueue,
– DropTailQoSQueue
– REDQueue

 Classifier class: BasicDSCPClassifier
 classifyByDSCP() creates new packet classifiers

Simulate Routing Updates
EIGRP

 Cisco’s EIGRP is a hybrid routing protocol between distance vector and link state routing
protocols

 EIGRP offers routing based on composite metric
 Cisco released EIGRP specs as IETF’s RFC draft in 2013

Basic Operation
 EIGRP employs Diffusing Update Algorithm (DUAL)
 Propagates topology change minimizing path compute time
 Sends event-driven partial bound updates

– Weighted (Bandwidth + Delay)

ANSA
Automated Network Simulation and
Analysis
@Brno University of Technology
Czech Republic

EIGRP Simulation Module Structure

Simulate HSRP
Background

 Allows PC to keep communicating on an internetwork even if its default gateway becomes
unavailable

 Works by creating a virtual (phantom) router
– Virtual router has its own IP and MAC addresses

Hot Standby Router Protocol (HSRP)

Basic Operation

 Each PC is configured to use the virtual router as its default gateway
 When a PC broadcasts an ARP frame to find its default gateway, the active HSRP router

responds with virtual router’s MAC address
 Active router sends out HELLO periodically
 If the active router goes offline, a standby router takes over
 HSRP also works for proxy ARP

Automated Main Distribution Frame Housing Routers

Simulate Flooding
Message Complexity

 Flooding is a simple routing algorithm in which every incoming packet is sent through every
outgoing link except the one it arrived on

 Complexity
– M = Ω/(N-1)

Displaying no. of packets sent/received

 No. of messages at each node
 tictoc14.ned
 txc14.cc
 tictoc14.msg

Simulate TCP with BER
Reference Topology

TCP with BER
 A cross layer paradox
 TCP is for congestion control
 Packet loss due to PHY layer

– BER
 TCP wrongly interprets

– Goes into starvation

Line of Sight effect

 An object within the line-of-sight between two nodes s and b yields a weaker received signal
than that of a non obstructed pair s and a at the same distance

Support in Mixim

 Decider module
– Classifies incoming messages into receivable messages or noise
– Calculates the bit errors for the message
– Info. about current state of channel

PHY Layer Class Graph

Simulate Priority Queues
Recall!

 Designed to provide a relatively simple method of supporting differentiated service classes
 Cqueue provides FIFO by default
 Need to be modified for priority queuing

Operation
 Packets classified and placed into different priority queues
 Packets scheduled from the head of a queue only if all queues of higher priority are empty
 Within each of the priority queues, packets are scheduled in FIFO order

Priority Queuing with Classifier

Support in INET

Member Functions

 simple PriorityQueue extends Queue
{ @class(PriorityQueue);
}

 void setSchedulingPriority(short p);

DLL Services
Need

 The datalink layer is to the link what the transport layer is to the path
 Upper layer necessitates its behaviour

― Reliability
― Flow control
― Error control

 Corresponding services must exist

Services Models

 Services offered
― Reliable (PPP)
― Unreliable (Ethernet)

 Point to point
 Multiaccess

Services

 Framing
 Link access
 Error control
 Contention control

EDEC Techniques
Block Diagram

Strategy

Capabilities of EDEC

Constraints
 All EDEC methods only work below a certain error rate
 If we allow any no. of errors in data bits and in check bits, then no EDEC method can

guarantee to work
– Any valid pattern can transform into any other valid pattern

Parity Checks
Operation

 Single bit parity detect single bit errors
― Even
― Odd

Limitations

 Probability of undetected errors in a frame protected by single-bit parity
― can approach 50 percent

 Burst errors cause such nondetections

Checksumming at DLL
Overhead of Parity schemes

 Single bit parity schemes provide little protection
 To provide enough resilience, redundancy increases linearly
 Solution:

― Treat data as k-bit integers
― Generate k-bit overhead

Operation

 RFC 1071 addresses Internet checksum algorithm
 1s complement of all sums of k-bit integers forms the Internet checksum

― 16-bit for TCP/UDP
 Carried in the segment header

Variants

 TCP and UDP: checksum computed over all fields
― Header + data

 IP: IP header
 XTP: one checksum is computed over the header and another checksum computed over

entire packet.

DLL vs Transport
 Transport layer is typically implemented in software
 Error detection has to be simple and fast

― Checksumming
 DLL implemented in NIC

― CRC is more robust

Horizontal & Vertical Parity
2D Generalization

 d bits in D are divided into i rows and j columns
 Parity value computed for each row and for column
 i + j + 1 parity bits comprise DLL frame’s error-detection bits

– 17 bits for 64 bits
• ~27%

Two-Dimensional Parity

Error Correction

 A single error is detectable
– And correctable

 Even an error in the parity bits themselves is also detectable and correctable
– Forward error correction (FEC)

Limitations

 Two-dimensional parity can also detect (but not correct!) any combination of two errors in a
packet

Cyclic Redundancy Check
Principle

 Checksum becomes weak
― Limited illegal rep

 CRC more powerful error-detection code
― Views data bits, D, as a binary number
― Choose r+1 bit G
― Goal: choose r CRC bits, R, so <D,R> exactly divisible by G (modulo 2)

 Receiver knows G,
 Divides <D,R> by G
 All zeros
 No error
 If non-zero remainder: error detected!

Modulo 2

 Modulo-2 arithmetic
 Addition & subtraction are identical
 Both equivalent to bitwise exclusive-or (XOR) of operands
 1011 XOR 0101 = 1110
 1001 XOR 1101 = 0100

Operation

 D.2r XOR R = nG
― Left shift by r then append R
― Multiple of Generator

Mathematical manipulation

 D.2r = nG XOR R
 If we divide D.2r by G, want remainder R to satisfy

D = 101110, d = 6, G = 1001, r =3

9 bits transmitted in this case are 101110 011

Throughput of MAC
Ideal MAC

 Broadcast channel of rate R bps
 When one node wants to transmit, it can send at rate R

― M nodes transmit
― Each sends at average rate R/M

 Fully decentralized
 No special node to coordinate TXNs
 No synchronization of clocks
 No slots
 Simple

Access Methods

Analysis

 Effective throughout depends upon various factors
– No. of active users
– No of resources
– Channel access methods
– Traffic volumes

 Probabilistic in nature

Channel Partitioning
Basic Idea

 Divide channel into smaller “pieces”
― Time slots
― Frequency
― Code
― Space

 Exclusive use

TDM

 Time divion multiplexing
 Access to channel in "rounds"
 Each station gets fixed length slot
 Length = packets trans time) in each round

– Unused slots go idle

TDM Example
Example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

 Fraction of time slots being used
– Depends upon the frame size

FDM

 Frequency divion multiplexing
― Channel spectrum divided into frequency bands

 Each station assigned fixed frequency band
― Unused transmission time in frequency bands go idle

FDM Example
Example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

 Fraction of frequency bands being used
– Depends upon the transmission times of each user

Random Access Protocols
Basic Idea

 When node has packet to send
– transmit at full channel data rate R
– No a priori coordination among nodes

 Collisions are legal
– Two or more transmitting nodes cause collision

Packet attempt instants in space and time

Managing Collisions

 How to detect collisions?
― Voltage change

 How to recover from collisions?
― Wait &
― Retransmit

ALOHA
Basic Idea

 Just say as you like!
 Whenever and wherever

― Simplest
― No synchronization

Packet transmissions are independent
Packet reception success dependent upon others not transmitting

Probability of Success

P(success by given node) = P(node transmits) * P(no other node transmits in [t0-1,t0] * P(no other
node transmits in [t0-1,t0]

p . (1-p)N-1 . (1-p)N-1
= p . (1-p)2(N-1)
[choosing optimum p and n very large]
= 1/(2e) = .18

Slotted ALOHA
Basic Idea

 Minimize collisions
– Through synchronization
– Through frame size delimiting

Assumption
 All frames same size
 Time divided into equal size slots

― Time to transmit 1 frame
 Nodes start to transmit only slot beginning
 Nodes are synchronized

― If 2 or more nodes transmit in slot, all nodes detect collision

Operation

 when node obtains fresh frame, transmits in next slot
― if no collision: node can send new frame in next slot
― if collision: node retransmits frame in each subsequent slot with prob. p until success

Performance of Network with 3-Nodes
 30% success
 How many collisions?
 How many empty slots?

Pros

 Single active node can continuously transmit at full rate of channel
 Highly decentralized: only slots in nodes need to be in sync (master clock)
 Simple to implement

Cons

 Collisions, wasting slots idle slots
 Nodes may be not able to detect collision in time
 Clock synchronization needed

Probability of Success

 N nodes with many frames to send, each transmits in slot with probability p
 Prob that given node has success in a slot = p(1-p)N-1
 Prob that any node has a success = Np(1-p)N-1

 Max efficiency: find p* that maximizes
Np(1-p)N-1

 for many nodes, take limit of Np*(1-p*)N-1
― N goes to infinity

 Max efficiency = 1/e = .37

CSMA/CD
Basic Idea
Carrier Sensing

 Listen before transmit
 If channel sensed idle

– Transmit entire frame
 If sensed busy

– Defer transmission
Collisions Detection

– Within short time
 Colliding transmissions aborted
 Reduces channel wastage

CSMA/CD States

 Contention
 Transmission
 Idle

Binary (Exp) backoff
 After mth collision, NIC chooses K at random from {0,1,2, …, 2m-1}
 NIC waits K·512 bit times, returns to Step 2

― If idle, start trans
― If busy wait until idle, then transmits

 Longer backoff interval with more collisions

CSMA/CD Efficiency
Factors Affecting (1 of 2)

 Tprop = max prop delay between 2 nodes in LAN
 ttrans = time to transmit max-size frames
 Full load

– Worst
 Partial load

– Increases till a range
 No load

– Poor performance
 Efficiency goes to 1
 As tprop goes to 0
 As ttrans goes to infinity
 Efficiency goes to 0 vice versa

transprop /tt+
=Efficiency

51

1

Performance with Variants

Min Frame Size Computation
Min Frame Size

 Ethernet recommends 64 Bytes
– Inclusive of headers

 If the data portion of a frame < 46 bytes
 Pad field is used to fill out the frame to min. size
 Wireless networks necessitate lesser size

– ReTx cost to be minimized
 Optical networks require longer frames

Reasons

 Data field of 0 bytes is sometimes useful
– When a transceiver detects a collision, it truncates the current frame

 Stray bits and pieces of frames appear on the cable all the time
 To distinguish valid frames from garbage
 Collision detection can take as long as 2 τ

Reasons
 Prevent a station from completing the transmission of a short frame before the first bit has

even reached the far end of the cable
– where it may collide with another frame

Ethernet Calculation

 10-Mbps LAN
 Max length = 2500 m (four repeaters: 802.3 specs)
 RTT = 50 μsec in the worst case

― Therefore, the minimum frame must take at least this long to transmit
 At 10 Mbps, a bit takes 100 nsec

― 500 bits is the smallest frame that is guaranteed to work
 To add some margin of safety, round up to 512 bits or 64 bytes

Max Frame Size Computation
Background

 Ethernet recommends 1500 bytes as Max
 This limit was chosen arbitrarily for DIX standard
 Transceiver needs enough RAM to hold an entire frame

– More expensive transceivers

Factors
 Overhead
 Pipelining
 Transmission errors

Overhead of Variable Length Packet

 Each frame contains V as overhead bits
 Kmax:Max length of packet
 Message of length M

– Broken down into M/Kmax packets

Overhead of Variable Length Packet (2 of 2)

 As Kmax decreases, the number of frames increases
– Thus the total overhead in the message

 Processing load in a multiple hop network increases

Pipelining

 Split the message into smaller packets
– While the later packets arrive on the input queue of the node
– Former packets are leaving or may have already left the output queue

Pipelining Scenario

 Decreasing delay by shortening packets to take advantage of pipelining

Pipelining Scenario
 The total packet delay over two empty links equals twice the packet transmission time on a

link plus the overall propagation delay

Pipelining Scenario

 When each packet is split in two, a pipe lining effect occurs
 The total delay for the two half packets equals 1.5 times the original packet transmission

time on a link plus the overall propagation delay

Tradeoff between Overhead & Pipelining

 As the overhead V increases, Kmax should be increased
 As the path length j increases, Kmax should be reduced

Transmission Errors

 Large frames have a somewhat higher error probability than small frames
 Probability of error on reasonable-sized
 frames is on the order of 10-4 or less

– This effect is typically less important than the other effects

Fixed Frame Size Computation
Why Fixed Frame?

 Expectability of performance
– Latency
– Throughput
– Cell loss

 Resource pre-emption

Considerations
 How much should be the fixed size?

– Processing at the nodes
 Header to payload efficiency

– Padding requirement
 Applications (Voice/video)

– Achieve a small delay for stream-type traffic
 Assume an arrival rate of R and a packet length K

– First bit in a packet is then held up for a time K/R
– Waiting for the packet to be assembled

Fixed Frame (cell) networks

 ATM recommends 53 bytes (424 bits) as Max
– 48 bytes payload
– 5 bytes header

 Emulates circuit-like behaviour
– Good for interactive
– Bad for file transfer

Multi-Protocol Label Switching
Intro

 Multi Protocol Label Switching (MPLS)
– Fast packet switching & routing
– Provides designation, routing, & switching of traffic flows through MPLS

domain
 All packets labelled before being forwarded
 Network layer header not processed
 Although idea was to facilitate fast packet switching
 Main goal: support traffic engineering and QoS

Basic Idea
 Route once and switch many times
 Set of packets that have the same traffic characteristics are forwarded in the same manner

– Along the route that starts from an ingress node and ends at an egress node of an
MPLS network

MPLS Network Components

MPLS Enhanced Forwarding

Important Parameters

 Link utilization
 Voice jitter
 End to end delay
 Traffic Received when FRR vs link failures

Load Balancing in Data Centre
Intro

 Google, Microsoft, Facebook, and Amazon have built massive data centers
 Each houses tens to hundreds of thousands of hosts
 Concurrently support many distinct cloud applications
 Search, email, social networking, and e-commerce
 Top of Rack (TOR) switch interconnects the hosts in the rack
 With each other
 With other switches in the data center
 Form a data centre network

Basic Idea
 Each application is associated with a publicly visible IP address
 Clients send their requests and receive responses
 Inside, external requests first directed to load balancer
 Distributes and balances requests to hosts

– Also called L4 switch (with NAT)

Problems in Hierarchical Topology

Limited Host to Host Connectivity (1 of 2)

 40 simultaneous flows between 40 pairs of hosts in different racks
– 10 hosts in rack 1 sends a flow to a corresponding host in rack 5
– 10 flows between pairs of hosts in racks 2 and 6, 3 and 7, and 4 and 8

 40 flows crossing the 10 Gbps A-to-B link (and B-to-C link) each only receive 10 Gbps / 40
= 250 Mbps

Solution: Fully Connected Topology

Correctness of Stop and Wait
Stop and Wait Operation

 Client sends request
– Waits for response

 Server sends response
– Waits for ack

 Step-locked communication
 Most web and other servers based upon it

– Pipelining is deviation

Problems with Unnumbered Packets

Problems with Unnumbered ACKs

Problems Management using Seq. Nos.

Efficiency of Go Back N
Stop and Wait Operation

 Client sends request
– Waits for response

 Sends next request
 Each request travels all along the way to server
 Response travels backwards

Efficiency of Stop & Wait Operation

 8000 bit packet
 If RTT=30 msec, 1KB pkt every 30 msec 33kB/sec throughput over 1 Gbps link

Utilization of Go-Back N under No Loss

U
sender =

.0024

30.008
= 0.00081

3L / R

RTT + L / R
=

Limitations of Go Back N

 Retransmissions, or delays waiting for time outs, occur in go back N due to following
 Errors in the forward direction
 Errors in the feedback direction
 Longer frames in the feedback than in the forward directions

Effect of Long Frames in Reverse Direction

 Ack for packet 1 does not arrive at the sending side by the time packet 6 finishes
transmission, thereby causing a retransmission of packet 0

 Probability that a frame is not acked by the time the window is exhausted is given by

Character-based Framing
Character Codes

 Character codes such as ASCII provide binary representations
– Keyboard characters and terminal control characters
– Also for various communication control characters

SYN Idle

 A string of SYN characters provides idle fill between frames when a sending DLC has no
data to send

– But a synchronous modem requires bits

STX and ETX

 STX (start of text) and ETX (end of text) are two other communication control characters
– Used to indicate the beginning and end of a frame

Simplified Frame Structure

Problem
 The header or the CRC might (through chance) contain a communication control character

– Since these always appear in known positions after STX or ETX, (no problem for the
receiver)

 The payload might contain ETX character
– Interpreted as ending the frame

Transparent Mode

 The transparent mode uses a special control character called DLE (data link escape)
― Inserted before the STX character to indicate the start of a frame in transparent mode
― Also inserted before intentional uses of communication control characters within

such frame

Bit-oriented Framing
Bit-oriented Protocols

 Bit-oriented synchronous protocol pass variable-length frames
– Image/voice data
– Web data

 Dedicated or switched Simplex, half and full duplex

Flags

 8-bit sequence (01111110) that delimits a frame's
– Start and End

 Procedure
– When DLL detects seq of 5 1s in a row in user data
– Inserts a 0 immediately after the 5th 1 in transmitted stream

 DLL at receiver removes inserted 0s by looking for seq of 5 1s followed by stuffed 0s

 Problem
 Confusion between possible appearances of the flag as a bit string within frame and actual

flag indicating end of the frame

Bit-Stuffing Example

 The frame after stuffing never contains more than five consecutive 1's
― Hence flag at the end of the frame is uniquely recognizable

Framing with Errors
Problems with framing

 Several peculiar problems arise
 When errors corrupt the framing information on the communication link

– Flagging
– CRC
– Length field

Flags

 If an error occurs in flag at end of a frame
– The receiver will not detect the end of frame
– Does not check the cyclic redundancy check (CRC)

 When next flag detected, receiver assumes CRC to be in position preceding flag
 This perceived CRC might be the actual CRC for the following frame
 But the receiver interprets two frames as one
 Receiver fails to detect the errors with a probability 2-L
 L is the length of the CRC

False Flag Example
Bits before the perceived flag are interpreted by the receiver as a CRC

– Accepting a false frame

–
 Called the data sensitivity problem of DLC

– Even though the CRC is capable of detecting any combination of three or fewer
errors

– A single error that creates or destroys a flag plus a special combination of data bits to
satisfy the perceived preceding CRC, causes an undetectable error

Length Fields
Purpose of Length Field

 Basic problem in framing is to inform the receiving DLC where each idle fill string ends
– Where each frame starts
– Where each frame ends

 Include length field in the frame header

Overhead of Length Field

 If the length is represented by ordinary binary numbers
 No. of bits in the length field has to be at least
 L = log2[Kmax+1]

– Kmax is the maximum frame size

Problems with Length Fields

 An error in this length field causes receiver to look for the CRC in the wrong place
– An incorrect frame is accepted with probability 2-L
– L is the length of the Length field

 Receiver does not know where to look for subsequent frames

Partial Solution-1
 DECNET uses a fixed-length header for each frame

– Places length of frame in header
– Header has its own CRC

 Limitation: transmitter must still resync after such an error
 Receiver will not know when next frame starts

Partial Solution-2

 A similar approach is to put the length field of one frame into the trailer of preceding frame
– Avoids inefficiency of the DECNET approach
– Requires special synchronizing seq after each detected error

Topology and Connectivity
Topology

 Physical connectivity
– Star
– Hub
– Mesh
– Bus
– Tree

 Connectivity is implied
 Wireless networks have constrained

– Topology
– Connectivity

Ad hoc Networks

 No infrastructure
 Nodes themselves

– Transmit
– Receive
– Relay (forward)

 An operational area in which nodes randomly placed
 Locations follow a spatial distribution
 Must communicate with neighbors

– Certain power

Spatial Reuse vs Connectivity

 The transmission range in the network is large
― At a time at most one transmission occurs

 With smaller transmission ranges, many transmissions can occur simultaneously
― Spatial reuse
― Multihop

Feasibility Region
 x1: location of the first node
 x2: location of second node
 Nodes distributed uniformly in [0, z]

x1 ≤ x2

 Two-node network

connected if x2 − x1 ≤ r
 Transmission range of

every node: r(n) ,
where n is the number
of nodes in network

Link Scheduling & Capacity
Hidden Terminal Problem

 Wireless nodes are blind
 Carrier sensing is hard
 Collision detection is harder

Link Scheduling

 MACA
 MACAW

Network Capacity
 Sum of all active connections

― Simultaneous
― Non interfering

 Varies with time
 Protocol design determines the effectiveness

Scheduling Constraints
Underlying Assumptions

 Multihop wireless network
 Topology has already been discovered
 Directed graph G(N , E)

― N is the set of nodes
― E is the set of directed edges

 An edge (i, j) ∈ E
 Transmission from i , addressed to j
 Decoded by j, provided that the SIR at j is adequately high

Constraints

 The edges can be grouped into subsets
― Edges in a subset can be activated in the same slot
― Receiver in each edge can decode the transmission from the tail (TX) node of the

edge
 Slotted time
 When such a set, S is activated one packet can be sent across each edge in S

Independent Sets

 S1 = {(1, 2), (5, 6), (3, 4)}
 S2 ={(2, 3), (1, 5)}
 S3 = {(2, 3), (4, 5), (1, 6)}

Centralized Scheduling
Scheduling Problem

 Schedule specifies a seq of independent sets to be activated
 Static link activation schedule
 Allocates MS slots to independent set S
 BW allocation follows

Maximum Schedulable Region

 Set of all such flow rates λ by L
– Flow on each link be less than the average link capacity under the schedule

Bluetooth Example

 Piconet is a centralized TDM system
 Master controls the clock
 Determining which device gets to communicate in which time slot

Marginal Buffering at Every Hop
Definition

 Multiplexer has no buffer to store data arriving in a slot but cannot be served in that slot
 Performance depends only on marginal distribution of arrival process
 Doesn't depend on correlations b/w arrivals in slots

Simple Analogy

 The basic idea of “bufferless” multiplexing/routing is
– Always forward a packet to an output port regardless of success

Multiplexer Network Scenario

 Traffic flow from location 1 to locations
2 and 3

 And from location 2 to location 3
– Old and new traffic

causes superposition

Comments
 Packet switching is unachievable with zero buffering
 At least the header of a packet needs buffer

– Cut through
 Mostly store-and-forward switching

– An arriving packet entirely copied into switch from input to output links

Arbitrary Buffering at Every Hop
Arbitrary Buffering

 Connection admission control with burst scale buffering
 Leaky bucket shaped sources and QoS requirements

Buffering constraints

 An arriving stream connection may or may not be admitted, if traffic is already being carried
by the link

 Problem is exacerbated for multihop links

Scenario for Arbitrary Buffering

 Voice at loc 1 destined

for loc 2 enters network
at router 1 & leaves at
router 2

 Voice at loc 1 destined
for loc 3 leaves the link
from router 1 to router 2
and enters the link from
router 2 to router 3

 Here two-hop traffic
multiplexed with data
from loc 2 to loc 3

Comments

 Traffic from a source may be well characterized at the point where it enters the network
 After multiplexing at the first hop, the flows become dependent

– This dependence is very difficult to characterize

Problem Set 1
Effect of BER on Channel Performance
Suppose that an 11-Mbps 802.11b LAN is transmitting 64-byte frames back-to-back over a radio
channel with a bit error rate of 10-7 . How many frames per second will be damaged on average?

Ethernet Framing
A 1-km-long, 10-Mbps CSMA/CD LAN (not 802.3) has a propagation speed of 200 m/μsec.
Repeaters are not allowed in this system. Data frames are 256 bits long, including 32 bits of header,
checksum, and other overhead. The first bit slot after a successful transmission is reserved for the
receiver to capture the channel in order to send a 32-bit acknowledgement frame. What is the
effective data rate, excluding overhead, assuming that there are no collisions?

CSMA/CD Backoff Algo Performance
Two CSMA/CD stations are each trying to transmit long (multiframe) files. After each frame is
sent, they contend for the channel, using the binary exponential backoff algorithm. What is the
probability that the contention ends on round k, and what is the mean number of rounds per
contention period?

Problem Set 1
Operation of MAC Addressing
Suppose nodes A, B, and C each attach to the same broadcast LAN (through their adapters). If A
sends thousands of IP datagrams to B with each encapsulating frame addressed to the MAC address
of B, will C’s adapter process these frames? If so, will C’s adapter pass the IP datagrams in these
frames to the network layer C? How would your answers change if A sends frames with the MAC
broadcast address?

Performance of ALOHA
Suppose four active nodes—nodes A, B, C and D—are competing for access to a channel using
slotted ALOHA. Assume each node has an infinite number of packets to send. Each node attempts
to transmit in each slot with probability p. The first slot is numbered slot 1, the second slot is
numbered slot 2, and so on.
a. What is the probability that node A succeeds for the first time in slot 5?
b. What is the probability that some node (either A, B, C or D) succeeds in slot 4?
c. What is the probability that the first success occurs in slot 3?
d. What is the efficiency of this four-node system?

Switch Learn-ability
Consider a network in which 6 nodes labeled A through F are star connected into an Ethernet
switch. Suppose that (i) B sends a frame to E, (ii) E replies with a frame to B, (iii) A sends a frame
to B, (iv) B replies with a frame to A. The switch table is initially empty. Show the state of the
switch table before and after each of these events. For each of these events, identify the link(s) on
which the transmitted frame will be forwarded, and briefly justify your answers.

Simulate Parity Scheme Failure
Support in INET (Channel Behaviour)

 BER & PER allow basic error modelling
 When channel decides (based on RN) that an error occurred during transmission of packet
 Sets an error flag in the packet object

Support in INET (Rx Behaviour)

 The receiver module is expected to check the flag
 Discard the packet as corrupted if it is set

– Default BER and PER are zero

Typical Example
• channel Ethernet100 extends ned.DatarateChannel

{
 datarate = 100Mbps;
 delay = 100us;
ber = 1e-10;
}

Failing Parity Scheme

 Need to hardcode the pattern that fails parity scheme
 The data pattern must be known

– So that a corresponding error model can be designed

Simulate ARP Behaviour
Scenario

 Client computer opens TCP session with server
 Rest of operations (including ARP) follow

– ARP has to learn the MAC address for the default router

Design Tour of INET 3
arpTest.client.eth[0].arp

Inside ARP Packet

ARP Packet Class (Generated by .msg file)
// file: ARPPacket.msg
message ARPPacket
{
fields:
 int opcode enum(ARPOpcode);
 MACAddress srcMACAddress;
 MACAddress destMACAddress;
 IPAddress srcIPAddress;
 IPAddress destIPAddress;
};

Packet Queue (Contains IP Packet)

ARP Cache Build-up

ARP Variants

 ARP Broadcast-unicast behaviour
 Proxy ARP
 Gratuitous ARP
 Reverse ARP

Performance

 No of broadcast attempts
 No of successes
 Effect of network size
 Multihop performance

Output Analysis on WireShark
Wireshark

 A packet capturing & analysis tool
― Work in promiscuous mode

 Presents output in Binary, Hex and ASCII
 Saves files as .pcap

Packet Capture Process

Wireshark Interface

Example
inet/examples/inet/tcpsack

 Sets up a flow between two hosts with TCP Sack
 Outputs files in multiple formats,
 Including the pcap format

Simulate Switching vs Routing
Why compare!

 Routing is inter-network phenomenon
― It is pre-forwarding

 Switching is intra-network
― It is forwarding

 Apparently no comparison
 Comparison at the device level

― Router vs switch

Router vs Switch

 Routing process
― Forwarding process

 Switching process
― Port-based MAC learning

 ID-based behaviour
― Unicast
― Broadcast

Basis of Comparison
 Cost

― All router
― All switch
― Hybrid

 Isolation
― Traffic
― Domain

 Speed
 Complexity

Parameters

 Output queue lengths
 Output queue length distribution
 Output queue length Vs time plots
 Number of packets generated and received by hosts
 Packet size distribution
 Hop count distribution
 End to end delay

A Router (or Switch) Package

Overview of Access Technologies
Broadband Access

 Broadband is longhaul (backhaul)
– Shared medium
– Long distance

 Vs access side (baseband)
 Lastmile (first mile)

– User-connecting technologies

Taxonomy of Packet Technologies

Taxonomy of Wireless Technologies

WiFi
WLAN Protocol Stack

The Hidden (Exposed) Station Problem

RTS CTS Mechanism
 Sender sends request to send
 Receiver acknowledges as clear

– Overhearing neighborhood cautioned

WLAN Configuration

WiFi Operations
Operations

 Synchronization
 Authentication
 Association
 Data Transmission
 Handoff
 Power management

Scanning for APs

Mobility in the Same IP Subnet

 H1 moves from BSS1 to BSS2
 Keeps its IP address

― And all of its ongoing TCP connections

Mobile IP
Degrees of Mobility

Mobile IP Standard
 RFC 3344
 Elements

― Home agents,
― Foreign agents,

 Foreign-agent registration
 Care-of-addresses
 Encapsulation (packet-within-a-packet)

Elements of Mobile IP System

Procedures

 Agent discovery
 Registration with home agent
 Indirect routing of datagrams

Indirect Routing

Packet Cable Networks
Background

 Packet broadband cable network
― Built on existing broadcast cable TV (CATV) networks

 Hybrid fiber coax (HFC) cable networks
― Deployment of optical fiber
― New amplifier technology

 Alternative to DSL

Architecture

 Tree topology
 One-way broadcast
 Headend and cable modems

Headend

 Operational center of a CATV cable access network
 Connected to many distribution nodes via trunk cables

― Coax cable or fiber

Components

Functions of Headend

 Receiving broadcast signals from satellite or microwave dishes
 Mixing local or recorded TV programming
 Assigning channel frequencies to all signals destined for cable distribution

Functions of CMTS

 Controlling bandwidth allocation for data traffic to each modem
 Enforcing bandwidth allocation policy
 Assigning a time slot to each cable modem for transmitting upstream messages
 Enforcing QoS policies such as traffic shaping and policing (packet classification based on

QoS classes)

Cable Modem Network Configuration
 Cable Model Systems accommodates two way communication
 DOCSIS (data over cable service interface specification)

WiMax
Background

 IEEE 802.16 is an emerging wireless MAN technology
 Originally designed to provide wireless last mile/first mile deployment in a MAN
 Also end-user access an alternative to 802.11 family
 Mobility support provided

Introduction

 Worldwide Interoperability for Microwave Access (WiMAX)
 Many basic ideas of 802.16 borrowed from DOCSIS/HFC applied to the wireless setting
 Good analogy : Wi-Fi : Ethernet :: WiMAX : DOCSIS/HFC

Architecture

 Line-of-Sight(LOS) and tens of Ghz spectrum
 Severe atmospheric attenuation

– Suitable in operator network between two nodes with high bandwidth
Many base stations deployed at elevated positions

Components

Digital Subscriber Line
Background

 A family of technologies for broadband last-mile solution using existing copper wires

Introduction

 Based on two premises
– Discrete multitone (DMT) line code
– Widely deployed twisted pair

 Provides upto 7 Mbps (suitable for Internet)
 Flexible bandwidth allocation per user demand
 Dedicated vs CATV

Architecture

 Enterprise CPE includes an integrated access device (IAD)
 Or connected through Feeder Distribution Interface

DSL Family

Wireless Personal Area Networks
Introduction to LR-WPANs

 Low-rate low-power wireless personal area networks
– Types of wireless sensor networks

 Applications
– Industrial control & monitoring

– Environmental & health monitorinG
 Home automation, entertainment & toys
 Security, location and asset tracking
 Emergency and disaster response

Comparison
 IEEE 802.15.4

– A new MAC for LR-WPAN
 IEEE 802.11: an “overkill technology”
 Bluetooth: High data rate for multimedia applications
 Small size network
 High power consumption

ZigBee vs Bluetooth
 Smaller packets over large network
 Mostly Static networks with many, infrequently used devices
 Larger packets over small network
 Ad-hoc networks

IEEE802.15.4
Features

 Channels
– 16 channels in 2450 MHz band
– 10 channels in 915 MHz
– 1 channel in 868 MHz

 Over-the-air rates of 250,40& 20 kb/s
 Addressing
 16 bit short
 64 bit extended

 Allocation of guaranteed time slots (GTSs)
 CSMA-CA channel access
 Fully acknowledged data transfer
 Low power consumption
 Energy detection (ED)

Link quality indication (LQI)

Topology Models

Radio Frequency Identification
Introduction

 Presence known if within a certain radius
― Object identified

 Do not know exactly the position

Application Areas

Architecture

Traffic Flow

	Course code CS432
	Evaluation
	The complex world of networks

