
Chapter 1

 Operating Systems History and overview .. 2

About MS-DOS ... 2
MS-DOS Programmes .. 2
Features of DOS programming ... 2
Windows History .. 3
Features of Windows Programming .. 3
Difference between MS-DOS and Windows programming ... 3
Levels of Computer Languages .. 3
Summary ... 5
Tips ... 5

Windows Programming 2

Operating Systems History and Overview
Operating System is a software package which tells the computer how to function. It is
essentially the body of the computer. Every general-purpose computer requires some type
of operating system that tells the computer how to operate and how to utilize other
software and hardware that is installed onto the computer.

GUI - Graphical User Interface operating systems are operating systems that have the
capability of using a mouse and are graphical. To establish a point of reference, all
computers must have an OS. The OS controls input and output; makes reasonable effort
to control peripherals; and in short acts as the interface between you the user, the
software, and the hardware.

About MS-DOS
Microsoft DOS (Disk Operating System) is a command line user interface. MS-DOS 1.0
was released in 1981 for IBM computers and the latest version of MS-DOS is MS-DOS
6.22 released in 1994. While MS-DOS is not commonly used by itself today, it still can
be accessed from Windows 95, Windows 98 or Windows ME by clicking Start / Run and
typing command or CMD in Windows NT, 2000 or XP.

MS-DOS Programs
DOS programs generally expect themselves to be the only program running on the
computer, so they will directly manipulate the hardware, such as writing to the disk or
displaying graphics on the screen. They may also be dependent on timing, since the
computer won't be doing anything else to slow them down. Many games fall into this
category.

Features of DOS programming
• It ”owns” the system
• Provides direct device access
• Non-portability across machines
• Status polling
• No multitasking
• No multithreading- Single path of execution
• DOS launches User Application; when done, control returned to DOS
• Assumes the current program is in total control of the hardware
• Supports the File Allocation Table (FAT) file system
• “Real-Mode” OS that is limited to the 8086 Address Space of 1 MB

Windows Programming 3

Windows History
On November 10, 1983, Microsoft announced Microsoft Windows, an extension of the
MS-DOS® operating system that would provide a graphical operating environment for
PC users. Microsoft called Windows 1.0 a new software environment for developing and
running applications that use bitmap displays and mouse pointing devices. With
Windows, the graphical user interface (GUI) era at Microsoft had begun.

The release of Windows XP in 2001 marked a major milestone in the Windows desktop
operating system family, by bringing together the two previously separate lines of
Windows desktop operating systems.

Features of Windows Programming
• Resource sharing
• Device independent programming
• Message driven operating system
• GDI (Graphics Device interface)
• Multitasking
• Multithreading

Difference between MS-DOS and Windows
programming

In 32-bit windows programming, we are freed from the curse of 64k segments, far and
near pointers, 16-bit integers and general limitations.

With this power, though, comes responsibility: we no longer have exclusive control over
the machine. In fact, we don't have direct access to anything: no interrupts, no video
ports, and no direct memory access.

Ultimately, the difference between these two types of programming term is who has
control over the system. Moreover, by taking into account the message driven operating
system, you would be better able to know what happens behind the scenes and how the
system interacts with the internal and external messages.

Levels of Computer Languages
Low level languages are more close to machine language or computer understandable
language while the high level language are more close to human understandable
language.

Windows Programming 4

Note that from one of the middle level language i.e. C / C++, two programming
languages have emerged, MFC programming and Win32 API programming. Both of
these programming languages have got their basis from C / C++.

MACHINE
LANGUAGE

C / C ++
middle level

language

WIN32 API
PROGRAMMING

MFC
PROGRAMMING

OTHER
ADVANCED

LANUGUAGES

ASSEMBLY
LANGUAGE

low level language

Levels of Computer Languages

Windows Programming 5

Tips
• During programming, take into account which operating system you are using so

that you can make use of all the available resources in the best possible way.
• Windows programs are considered to be more secure and reliable as no direct

access to the hardware is available.

Summary
In this section, we have discussed a brief overview of MS-DOS and Windows operating
systems. We have also pointed out the main features of DOS and Windows
Programming. Only one DOS program can be executed at a given time and these
programs owns the system resources. While in Windows, we can execute several
different programs simultaneously. Windows operating system don’t give us the direct
access to interrupts, video ports and memory etc.

Chapter 2

Random access memory (RAM) .. 2

Pointer Definition .. 2
How to assign a value to the pointer? ... 2

Pointers Arithmetic ... 3
Example: pointers increment and decrement .. 3
Example: pointers addition and subtraction ... 4
Example: pointers comparison (>, <, ==) .. 4

Arrays as Pointers .. 4
Array name is a const pointer .. 5
A pointer can point to element of an array ... 5
Example: Pointer De-referencing .. 5
Example: Pointer arithmetic. .. 5
Example: .. 6

Pointer Advantages .. 6
Pointer Disadvantages .. 6

What's wrong here? ... 7
Summary ... 7
Tips ... 7

Basic C Language Concepts 2

Random access memory (RAM)
RAM (random access memory) is the place in a computer
where the operating system, application programs, and data
in current use are kept so that they can be quickly reached by
the computer's processor. RAM is much faster to read
from and write to than the other kinds of storage in a
computer, i.e. the hard disk, floppy disk, and CD-ROM.
However, the data in RAM stays there only as long as your
computer is running. When you turn the computer off,
RAM loses its data. When you turn your computer on again,
your operating system and other files are once again
loaded into RAM, usually from your hard disk.

RAM is the best known form of computer memory. RAM is considered "random access"
because you can access any memory cell directly if you know the row and column that
intersect at that cell.

Every byte in Ram has an address.

00000000 00000000
00000000 00000001

00000000 00000010
. . .
. . .
. . .
. . .
11111111 11111111

Pointer Definition
Essentially, the computer's memory is made up of bytes. Each byte has a number, an
address, associated with it. “Pointer is a kind of variable whose value is a memory
address, typically of another variable”. Think of it as an address holder, or directions to
get to a variable.

How to assign a value to the pointer?
 int *p;
 int i = 3;
 p = &i;

• read & as "address of"

Basic C Language Concepts 3

In this piece of code, we have taken a pointer to integer denoted by “*p”. In second
statement, an integer is declared and initialized by ‘3’. The next step is the most
important one. Here we are passing the “Address” of the integer “i” in the pointer.
Since pointers hold the variable addresses; so now the pointer “p” contains the
address of the integer “i” which has a value of 3.

Pointers Arithmetic
• Pointer Arithmetic deals with performing addition and subtraction operations on

pointer variables.
• increment a pointer (++)
• decrement a pointer (--)
• Address in pointer is incremented or decremented by the size of the object it

points to (char = 1 byte, int = 2 bytes, ...)

Example: pointers increment and decrement
char x = 'A'; // variable declaration and initialization
int y = 32;

char *xPtr = &x;
int *yPtr = &y; // pointer declaration and initialization

...
xPtr--; //Since char takes 1 byte, and if xPtr has
 // a value of 108 now it would have a value of
 // address 107

xPtr++; // pointer would have a value of address 108

Here, we have explained that if we add 1 to a pointer to integer, then that pointer will
point to an address two bytes ahead of its current location. Similarly, when we
incremented the xPtr, the address it contained is incremented to one value since xPrt is a
pointer to integer.

Note:

Value added or subtracted from pointer is first multiplied by size of object it points to

Basic C Language Concepts 4

Example: pointers addition and subtraction
...
yPtr-=3; // Since int takes 2 byte, and assume that yPtr was

 //pointing to address of 109, now it points to address of
 // 103 as 109 - (3 * 2) = 103

yPtr+=1; // now yPtr points to address of 105

This means that in the above statement when we will add 1 to the yPtr, where yPtr is a
pointer to integer, then the pointer will skip two bytes once and will point to an address of
105 instead of 103.

Example: pointers comparison (>, <, ==)
...
if (xPtr == zPtr)

 cout << "Pointers point to the same location";

else

 cout << "Pointers point to different locations";

Arrays as Pointers
An array name is actually a pointer to the first element of the array. For example, the
following is legal.

 int b[100]; // b is an array of 100 integers.

 int* p; // p is a pointer to an int.

 p = b; // Assigns address of first element of b to p.

 p = &b[0]; // Exactly the same assignment as above.

In this piece of code, we have used the name of an array as pointer to first address of
array. In fact the name of the array is a constant pointer i.e. b is a constant pointer
whereas p is a variable pointer. We can change the contents of variable pointer but not or
constant pointer. In the last statement, we are assigning the address of b, i.e. the constant
pointer to the variable pointer i.e. p.

Basic C Language Concepts 5

Array name is a const pointer

As we have already discussed above that when you declare an array, the name is a
pointer. You cannot alter the value of this pointer. In the previous example, you could
never make this assignment.

b = p; // ILLEGAL because b is a constant pointer.

A pointer can point to element of an array

 float x[15];
 float *y = &x[0];
 float *z = x;

• y is a pointer to x[0]
• z is also a pointer to x[0]
• y+1 is pointer to x[1]
• thus *(y+1) and x[1] access the same object
• y[1] is same as *(y+1)
• integer add, subtract and relational operators are allowed on pointers

Example: Pointer De-referencing
 int *ptr;
 int j = 10;

 ptr = &j;
 printf ("%d\n", *ptr);

 *ptr = 15;
 printf ("%d %d\n", *ptr, j);

 if (ptr != 0)
 { printf ("Pointer ptr points at %d\n", *ptr);
 }

• *ptr de-references pointer to access object pointed at
• *ptr can be used on either side of assignment operator
• if ptr is equal to 0, then pointer is pointing at nothing and is called a null pointer
• dereferencing a null pointer causes a core dump

Example: Pointer arithmetic.

 double d;
 double *ptr_d;
 char c;

Basic C Language Concepts 6

 char *ptr_c;
 ptr_d = &d;
 ptr_c = &c;
//This operation will skips 8 bytes in memory because ptr_d is a pointer to double.
 ptr_d = ptr_d + 1;
//This operation will skips 1 byte in memory because ptr_c is a pointer to character.
 ptr_c = ptr_c +1;

Example:
 float x[5];

Our memory model is

• x is a pointer to the first element
• *x and x[0] are the same
• x and &x[0] are the same
• elements of an array can be accessed either way
• x is an array object, not a pointer object

Pointer Advantages
• This allows a function to "return" more than a single value (we are not really

returning more than a single variable, but we are able to directly modify the
values that are in main, from within a function).

• This allows us to refer to larger data structures with just a single pointer. This cuts
back on creating multiple copies of a structure, which consumes both memory and
time.

• This also opens the door to dynamic memory allocation.

Pointer Disadvantages
• The syntax may be confusing initially.
• Harder to debug, have to follow pointers to make sure they are doing what is

expected.

Basic C Language Concepts 7

• More Segmentation faults / Bus errors

What's wrong here?
 float x[15];
 float* y, z;
 y = x; /* Right */
 z = x; /* Wrong */

• Y is a pointer to float so it can contain the starting address of array x
• z is a float and not a float pointer

Tips
• Use pointers when you want efficient results.
• To develop plug-ins of existing software uses pointers as much as you can.
• Take extreme care while manipulating arrays with pointers.
• Many bugs in large programs arise due to pointers so only use pointers when

necessary.
• Make sure to initialize pointers with some valid value.
• Don’t try to modify the contents of constant pointers.
• Be sure that the data types of pointer variable and the pointed variable are same.
• Do not assign system area addresses to pointers

Summary

In this lecture we started our discussion by revising our basic concepts like RAM. Then
we have discussed pointers, how pointers are initialized, what is meant by Pointer
Arithmetic. Pointers are very important and useful as with the help of them we can access
a very large data structure, similarly other advantages and a few disadvantages of pointers
have also been discussed.

Chapter 3

Arrays ... 2

Subscripts start at zero .. 2
Array variables as parameters ... 2
Operator Precedence .. 3
Initializing array elements .. 3
Multi-dimensional arrays ... 3
Array of C-strings .. 4
Function Pointers .. 4
Define a Function Pointer .. 5

Summary .. 5
Tips ... 5

Arrays and Pointers 2

Arrays
An array is a collection of elements of same type. An array stores many values in
memory using only one name. "Array" in programming means approximately the same
thing as array, matrix, or vector does in math. Unlike math, you must declare the array
and allocate a fixed amount of memory for it. Subscripts are enclosed in square brackets
[]. Arrays are essentially sequential areas of memory (i.e. a group of memory addresses).
However, we do not keep track of the whole array at once. This is because we only have
a limited size of data to work with.

Subscripts start at zero
Subscript ranges always start at zero.

 float x[100];

• first element of array is x[0]
• last element of array is x[99]

Array variables as parameters
When an array is passed as a parameter, only the memory address of the array is passed
(not all the values). An array as a parameter is declared similarly to an array as a variable,
but no bounds are specified. The function doesn't know how much space is allocated for
an array.

One important point to remember is that array indexes start from 0. Let’s say our array is
of 10 integers, its first element will be a[0] while the last one will be a[9]. Other
languages like Fortran carry out 1-based indexing. Due to this 0 based indexing for arrays
in C language, programmers prefer to start loops from 0.

Arrays can also be multi-dimensional. In C language, arrays are stored in row major order
that a row is stored at the end of the previous row. Because of this storage methodology,
if we want to access the first element of the second row then we have to jump as many
numbers as the number of columns in the first row. This fact becomes important when we
are passing arrays to functions. In the receiving function parameters, we have to write all
the dimensions of the array except the extreme-left one. When passing arrays to

Arrays and Pointers 3

functions, it is always call by reference by default; it is not call by value as in the default
behavior of ordinary variables.

Operator Precedence

C contains many operators, and because of operator precedence, the interactions between
multiple operators can become confusing. Operator precedence describes the order in
which C evaluates expressions

For example, () operator has higher precedence then [] operator.

The following table shows the precedence of operators in C. Where a statement involves
the use of several operators, those with the lowest number in the table will be applied
first.

Initializing array elements
 float x[3] = {1.1, 2.2, 3.3};
 float y[] = {1.1, 2.2, 3.3, 4.4};

Initializing an array can be taken place in many ways. In the first line of code, we are
declaring and initializing an array having three elements in it. In the second array, we are
initializing and declaring an array of 4 elements. Note that we have not specified the size
of the array on the left side of assignment operator. In this case, the compiler will itself
calculate the dimension or the size of the array after counting the initializer given in
parenthesis, and will declare an array of corresponding size.

Multi-dimensional arrays
The number of dimensions an array may have is almost endless. To add more dimensions
to an array simply add more subscripts to the array declaration. The example below will
show how this can be done.

int provinces [50];
 // This will declare an one dimensional array of 50 provinces.

int provinces[50][500];
// This will declare a two dimensional array of 50 provinces each including 500 cities.

int provinces[50][500][1000];
// This will declare a three dimensional array.

When using this n-dimensional array, each item would be having a unique position in
memory. For example to access the person in the second province, third city, eighth home
and the first person in the home the syntax would be:

Arrays and Pointers 4

provinces [2][3][8][1] = variable;

The size of the array would be very large. You can calculate the amount of memory
required by multiplying each subscript together, and then multiplying by the size of each
element. The size for this array would be 50 x 500 x 1000 x 4 x 2 bytes = 200,000,000
bytes of memory, or 190.73 megabytes, which would be unacceptable on today's
computers.

Array of C-strings
An array of C-strings is an array of arrays. Here is an example.

char* days[] = {"Mon", "Tue", "Wed", "Thu", "Fri"};

In the above days array each element is a pointer to a string, and they don't have to be of
the same size. For example,

char * greetings[] = {"Hello", "Goodbye", "See you later"};

Function Pointers

Function Pointers are pointers, i.e. variables, which point to the address of a function.
You must keep in mind, that a running program gets a certain space in the main-memory.
Both, the executable compiled program code and the used variables, are put inside this
memory. Thus a function in the program code is, like e.g. a character field, nothing else

Arrays and Pointers 5

than an address. It is only important how you, or better your compiler/processor, interpret
the memory a pointer points to.

int (*f1)(void); // Pointer to function f1 returning int

Define a Function Pointer
As a function pointer is nothing else than a variable, it must be defined as usual. In the
following example we define two function pointers named ptr2Function. It points to a
function, which take one float and two char and return an int.

 // define a function pointer

 int (*pt2Function) (float, char, char);

Tips
• Arrays should be used carefully since there is no bound checking done by the

compiler.
• Arrays are always passed by “reference” to some function
• The name of the array itself is a constant pointer
• Use function pointer only where it is required.

Summary
The importance and use of Arrays should be very clear till now. Arrays are basically a
data structure that is used to so store homogenous or same type of data in it. A very
useful thing which we have analyzed here is that when we pass the name of the array as
an argument to some function, then only the memory address of array is passed as
parameters to the function and not all the values of an array are passed. In the end we
have mentioned what the function pointers are? That is such pointers which points to the
address of the function.

Chapter 4

User Defined or Custom Data types ... 2

1. Structures ... 2
Declaring struct variables .. 2

Initializing Structures ... 4
Accessing the fields of a structure ... 5
Operations on structures ... 6

2. Unions .. 6
Using a Union .. 6
Example ... 6

3. Enumeration ... 7
Advantages and Disadvantages of Enumerations ... 7

4. Typedef .. 8
Advantages of typedef ... 8
What's the difference between these two declarations? 8

Summary ... 8
Tips ... 8

Structures and Unions 2

User Defined or Custom Data types
In addition to the simple data types (int, char, double, ...) there are composite data types
which combine more than one data element. The Custom data types include:

1. Structures
2. Unions
3. Enumerations
4. Typedefs

Arrays are used to store many data elements of the same type. An element is accessed by
subscript, eg, a[i]. Similarly, structures (also called records) group elements which don't
need to all be the same type. They are accessed using the "." operator, eg, r.name.

1. Structures

“A structure is a collection of variables under a single name. These variables can be of
different types, and each has a name that is used to select it from the structure”

Let's take an example:

struct Person {

 char name[20];
 float height;

 int age;

};

This defines a new type, Person. The order of the fields is generally not important. Don't
forget the semicolon after the right brace. The convention is to capitalize the first letter in
any new type name.

Declaring struct variables

The new struct type can now be used to declare variables. For example,
Person abc;
Structures are syntactically defined with the word struct. So struct is another keyword
that cannot be used as variable name followed by the name of the structure. The data,
contained in the structure, is defined in the curly braces. All the variables that we have
been using can be part of structure. For example:

struct Person{
 char name[20];

Structures and Unions 3

 float height;
 int age;
};

Here we have declared a structure, ‘person’ containing different elements. The name
member element of this structure is declared as char array. For the address, we have
declared an array of hundred characters. To store the height, we defined it as float
variable type. The variables which are part of structure are called data members i.e. name,
height and age are data members of person. Now this is a new data type which can be
written as:

 person p1, p2;

Here p1 and p2 are variables of type person l language and their extensibility. Moreover,
it means that we can create new data types depending upon the requirements.

Structures may also be defined at the time of declaration in the following manner:

struct person{
 char name[20];
 float height
int age;
}p1, p2;

We can give the variable names after the closing curly brace of structure declaration.
These variables are in a comma-separated list.

Structures can also contain pointers which also fall under the category of data type. So we
can have a pointer to something as a part of a structure. We can’t have the same structure
within itself but can have other structures. Let’s say we have a structure of an address. It
contains street address like 34 Muslim Town, city like Sukhar, Rawalpindi, etc and
country like Pakistan. It can be written in C language as:

 struct address{
 char streetAddress[100];
 char city[50];
 char country[50];
 }

Now the structure address can be a part of person structure. We can rewrite person
structure as under:

struct person{
 char name[20];
 address personAdd;
 float height;

Structures and Unions 4

int age;
};

Here personAdd is a variable of type Address and a part of person structure. So we can
have pointers and other structures in a structure. We can also have pointers to a structure
in a structure. We know that pointer hold the memory address of the variable. If we have
a pointer to an array, it will contain the memory address of the first element of the array.
Similarly, the pointer to the structure points to the starting point where the data of the
structure is stored.
The pointers to structure can be defined in the following manner i.e.

 person *pPtr;

Here pptr is a pointer to a data type of structure person. Briefly speaking, we have
defined a new data type. Using structures we can declare:

• Simple variables of new structure
• Pointers to structure
• Arrays of structure

Initializing Structures
We have so far learnt how to define a structure and declare its variables. Let’s see how
we can put the values in its data members. The following example can help us understand
the phenomenon further.

 struct person{
 char name[64];
 int age;
 float height;
 };

 person p1, p2, p3;

Once the structure is defined, the variables of that structure type can be declared.
Initialization may take place at the time of declaration i.e.

 person p1 = {“Ali”, 19, 5.5 };

In the above statement, we have declared a variable p1 of data type person structure and
initialize its data member. The values of data members of p1 are comma separated in
curly braces. “Ali” will be assigned to name, 19 to age and 5.5 to height. So far we have
not touched these data members directly.
To access the data members of structure, dot operator (.) is used. Therefore while
manipulating name of p1, we will say p1.name. This is a way of referring to a data
member of a structure. This may be written as:

 p1.age = 20;

Structures and Unions 5

 p1.height = 6.2;

Similarly, to get the output of data members on the screen, we use dot operator. To
display the name of p1 we can write it as:

 cout << “The name of p1 = “ << p1.name;

Other data members can be displayed on the screen in the same fashion.

Remember the difference between the access mechanism of structure while using the
simple variable and pointer.

• While accessing through a simple variable, use dot operator i.e. p1.name

• While accessing through the pointer to structure, use arrow operator i.e. pPtr-
>name;

Arrays of structures

Let’s discuss the arrays of structure. The declaration is similar as used to deal with the
simple variables. The declaration of array of hundred students is as follows:

 students[100];

In the above statement, s is an array of type student structure. The size of the array is
hundred and the index will be from 0 to 99. If we have to access the name of first student,
the first element of the array will be as under:

 s[0].name;

Here s is the array so the index belongs to s. Therefore the first student is s[0], the 2nd
student is s[1] and so on. To access the data members of the structure, the dot operator is
used. Remember that the array index is used with the array name and not with the data
member of the structure.

Accessing the fields of a structure
The fields of a structure are accessed by using the "." operator followed by the name of
the field.

abc.name = “Name”;
abc.height = 5.5;
abc.age = 23;

Structures and Unions 6

Operations on structures

A struct variable can be assigned to/from, passed as a parameter, returned by function,
used as an element in an array. You may not compare structs, but must compare
individual fields. The arithmetic operators also don't work with structs. And the I/O
operators >> and << do not work for structs; you must read/write the fields individually.

2. Unions
A union is a user-defined data or class type that, at any given time, contains only one
object from its list of members (although that object can be an array or a class type).

Using a Union

A C++ union is a limited form of the class type. It can contain access specifiers (public,
protected, private), member data, and member functions, including constructors and
destructors. It cannot contain virtual functions or static data members. It cannot be used
as a base class, nor can it have base classes. Default access of members in a union is
public.

A C union type can contain only data members.

In C, you must use the union keyword to declare a union variable. In C++, the union
keyword is unnecessary:

union DATATYPE var2; // C declaration of a union variable
DATATYPE var3; // C++ declaration of a union variable

A variable of a union type can hold one value of any type declared in the union. Use the
member-selection operator (.) to access a member of a union:

var1.i = 6; // Use variable as integer
var2.d = 5.327; // Use variable as double

You can declare and initialize a union in the same statement by assigning an expression
enclosed in curly braces. The expression is evaluated and assigned to the first field of the
union.

Example
// using_a_union.cpp

#include <stdio.h>

union NumericType
{

Structures and Unions 7

 int iValue;
 long lValue;
 double dValue;
};

int main()
{
 union NumericType Values = { 10 }; // iValue = 10
 printf("%d\n", Values.iValue);
 Values.dValue = 3.1416;
 printf("%f\n", Values.dValue);
 return 0;
}

Output
10
3.141600

3. Enumeration
C++ uses the enum statement to assign sequential integer values to names and provide a
type name for declaration.

 enum TrafficLightColor {RED, YELLOW, GREEN};
 . . .
 int y;
 TrafficLightColor x;
 . . .
 y = 1;
 x = YELLOW;

The enum declaration creates a new integer type. By convention the first letter of an
enum type should be in uppercase. The list of values follows, where the first name is
assigned zero, the second 1, etc.

Advantages and Disadvantages of Enumerations
Some advantages of enumerations are that the numeric values are automatically assigned,
that a debugger may be able to display the symbolic values when enumeration variables
are examined, and that they obey block scope. (A compiler may also generate nonfatal
warnings when enumerations and integers are indiscriminately mixed, since doing so can
still be considered bad style even though it is not strictly illegal.) A disadvantage is that
the programmer has little control over those nonfatal warnings; some programmers also
resent not having control over the sizes of enumeration variables.

Structures and Unions 8

4. Typedef
Typedef is creating a synonym "new_name" for "data_type". Its syntax is:

typedef data_type new_name;

Advantages of typedef
• Long chain of keyword in declarations can be shortened.
• Actual definition of the data type can be changed.

What's the difference between these two declarations?
 struct x1 { ... };
 typedef struct { ... } x2;

The first form declares a "structure tag"; the second declares a "typedef". The main
difference is that the second declaration is of a slightly more abstract type -- its users
don't necessarily know that it is a structure, and the keyword struct is

Tips
• Use structures when you have to deal with heterogeneous data types like different

attributes of an object.
• Take extreme care in accessing the members of a structure.
• Keep in your mind that just declaring the structure does not occupy any space in

memory unless and until you define a variable of type struct.
• While using unions, do remember that at one time only one member is contained

in it.
• By default the values assigned to enumeration values starts at zero, but if

required, we can start assigning integer values from any integer.
• The use of typedefs makes the code simpler by introducing short names for the

long data type names.

Summary
The custom or user defined data types are those data types which we create by our own
selves according to the requirements or the given situation. The most commonly used
custom data types include structures, unions etc. Unlike arrays, structures can store data
members of different data types. Unions are also a very important custom data type that
at a given time contains only one element from its member list. Enum declarations create
a new integer type. The integer type is chosen to represent the values of an enumeration
type. Thus, a variable declared as enum is an int. Similarly, typedefs are also used for
making a synonym or provides way to shorten the long chain of keywords in
declarations.

Chapter 5

Preprocessor ... 2
Preprocessor directives: #ifdef and #ifndef .. 2
Prevent multiple definitions in header files ... 2
Turning debugging code off and on ... 2

Some Preprocessor directives ... 3
 #define .. 3
Example: macro #defines .. 3
 #error .. 3
 #include .. 3

Conditional Compilation - #if, #else, #elif, and #endif .. 4
 #ifdef and #ifndef .. 4
 #undef... 4
 #line .. 4
 #pragma ... 4

The # and ## Preprocessor Operators .. 5
Macros .. 5

Standard Predefined Macros ... 5
 __FILE__ .. 6
 __LINE__ .. 6
 __DATE__ .. 6
 __TIME__ ... 6
 __STDC__ .. 6
 __STDC_VERSION__ .. 7
 __STDC_HOSTED__ ... 7
 __cplusplus ... 7

Summary ... 7
Tips ... 7

Preprocessor Directives 2

Preprocessor
The preprocessor is a program that runs prior to compilation and potentially modifies a
source code file. It may add code in response to the #include directive, conditionally
include code in response to #if, #ifdef, #ifndef directives or define constants using the
#define directive.
As defined by the ANSI standard, the C preprocessor contains the following directives:

#if #ifdef #ifndef #else #elif #include #define #undef #line #error #pragma

Preprocessor directives: #ifdef and #ifndef
The #ifdef (if defined) and #ifndef (if not defined) preprocessor commands are used to
test if a preprocessor variable has been "defined".

Prevent multiple definitions in header files
When there are definitions in a header file that can not be made twice, the code below
should be used. A header file may be included twice because more than one other
“include file” includes it, or an included file includes it and the source file includes it
again.

To prevent bad effects from a double include, it is common to surround the body in the
include file with the following:

#ifndef MYHEADERFILE_H
#define MYHEADERFILE_H
. . . // This will be seen by the compiler only once
#endif /* MYHEADERFILE_H */

Turning debugging code off and on
Debugging code is necessary in programs; however, it is not usually appropriate to leave
it in the delivered code. The preprocessor #ifdef command can surround the debugging
code. If DEBUG is defined as below (probably in an include file) all debugging statement
surrounded by the #ifdef DEBUG statement will be active. However, if it isn't defined,
none of the statements will make it through the preprocessor.

#define DEBUG
. . .
#ifdef DEBUG
 . . . // debugging output
#endif

Preprocessor Directives 3

Some Preprocessor directives
• #define
#define defines an identifier (the macro name) and a string (the macro substitution) which
will be substituted for the identifier each time the identifier is encountered in the source
file. Once a macro name has been defined, it may be used as part of the definition of
other macro names.

If the string is longer than one line, it may be continued by placing a backslash on the end
of the first line. By convention, C programmers use uppercase for defined identifiers.

Example: macro #defines
 #define TRUE 1
 #define FALSE 0

The macro name may have arguments, in which case every time the macro name is
encountered; the arguments associated with it are replaced by the actual arguments found
in the program, as in:

 #define ABS(a) (a)<0 ? -(a) : (a)
 ...
 printf("abs of -1 and 1: %d %d", ABS(-1), ABS(1));

Such macro substitutions in place of real functions increase the speed of the code at the
price of increased program size.

• #error
#error forces the compiler to stop compilation. It is used primarily for debugging. The
general form is:

 #error error_message

When the directive is encountered, the error message is displayed, possibly along with
other information (depending on the compiler).

• #include
#include instructs the compiler to read another source file, which must be included
between double quotes or angle brackets. Examples are:

 #include "stdio.h"
 #include <stdio.h>

Both of these directives instruct the compiler to read and compile the named header file.
If a file name is enclosed in angle brackets, the file is searched for as specified by the
creator of the compiler. If the name is enclosed in double quotes, the file is searched for

Preprocessor Directives 4

in an implementation-defined manner, which generally means searching the current
directory. (If the file is not found, the search is repeated as if the name had been enclosed
in angle brackets.)

Conditional Compilation - #if, #else, #elif, and
#endif
Several directives control the selective compilation of portions of the program code, viz,
#if, #else, #elif, and #endif.

The general form of #if is:
 #if constant_expression
 statement sequence
 #endif

#else works much like the C keyword else. #elif means "else if" and establishes an if-
else-if compilation chain.

Amongst other things, #if provides an alternative method of "commenting out" code. For
example, in
 #if 0
 printf("#d",total);
 #endif

the compiler will ignore printf("#d",total);.

• #ifdef and #ifndef
#ifdef means "if defined", and is terminated by an #endif. #ifndef means "if not defined".

• #undef
#undef removes a previously defined definition.

• #line
line changes the contents of __LINE__ (which contains the line number of the currently
compiled code) and __FILE__ (which is a string which contains the name of the source
file being compiled), both of which are predefined identifiers in the compiler.

• #pragma
The #pragma directive is an implementation-defined directive which allows various
instructions to be given to the compiler i.e. it allows a directive to be defined.
The #pragma directive is the method specified by the C standard for providing additional
information to the compiler, beyond what is conveyed in the language itself. Three forms
of this directive (commonly known as pragmas) are specified by the 1999 C standard. A
C compiler is free to attach any meaning it likes to other pragmas.

Preprocessor Directives 5

The # and ## Preprocessor Operators
The # and ## preprocessor operators are used when using a macro #define. The #
operator turns the argument it precedes into a quoted string. For example, given:

#define mkstr(s) # s

the preprocessor turns the line
 printf(mkstr(I like C);
into
 printf("I like C");
The ## operator concatenates two tokens. For example, given:
 #define concat(a, b) a ## b

 int xy=10;
 printf("%d",concat(x, y);
the preprocessor turns the last line into:
 printf("%d", xy);

Macros
A macro is a fragment of code which has been given a name. Whenever the name is used,
it is replaced by the contents of the macro. There are two kinds of macros. They differ
mostly in what they look like when they are used. Object-like macros resemble data
objects when used, function-like macros resemble function calls.

You may define any valid identifier as a macro, even if it is a C keyword. The
preprocessor does not know anything about keywords. This can be useful if you wish to
hide a keyword such as const from an older compiler that does not understand it.
However, the preprocessor operator defined can never be defined as a macro, and C++'s
named operators cannot be macros when you are compiling C++.

To define a macro that takes arguments, you use the #define command with a list of
parameters in parentheses after the name of the macro. The parameters may be any valid
C identifiers separated by commas at the top level (that is, commas that aren't within
parentheses) and, optionally, by white-space characters. The left parenthesis must follow
the macro name immediately, with no space in between.

For example, here's a macro that computes the maximum of two numeric values:
 #define min(X, Y) ((X)>(Y) ? (X):(Y))

Standard Predefined Macros
The standard predefined macros are specified by the C and/or C++ language standards, so
they are available with all compilers that implement those standards. Older compilers
may not provide all of them. Their names all start with double underscores.

Preprocessor Directives 6

• __FILE__
This macro expands to the name of the current input file, in the form of a C string
constant. This is the path by which the preprocessor opened the file, not the short names
specified in #include or as the input file name argument. For example,
"/usr/local/include/myheader.h" is a possible expansion of this macro.

• __LINE__
This macro expands to the current input line number, in the form of a decimal integer
constant. While we call it a predefined macro, it's a pretty strange macro, since its
"definition" changes with each new line of source code.

__FILE__ and __LINE__ are useful in generating an error message to report an inconsistency
detected by the program; the message can state the source line at which the inconsistency
was detected. For example,

fprintf (stderr, "Internal error: "
 "negative string length "
 "%d at %s, line %d.",
 length, __FILE__, __LINE__);

An #include directive changes the expansions of __FILE__ and __LINE__ to correspond to
the included file. At the end of that file, when processing resumes on the input file that
contained the #include directive, the expansions of __FILE__ and __LINE__ revert to the values
they had before the #include (but __LINE__ is then incremented by one as processing moves
to the line after the #include).

• __DATE__

This macro expands to a string constant that describes the date on which the preprocessor
is being run. The string constant contains eleven characters and looks like "Feb 12 1996".
If the day of the month is less than 10, it is padded with a space on the left.

• __TIME__

This macro expands to a string constant that describes the time at which the preprocessor
is being run. The string constant contains eight characters and looks like "23:59:01".

• __STDC__

In normal operation, this macro expands to the constant 1, to signify that this compiler
conforms to ISO Standard C.

Preprocessor Directives 7

• __STDC_VERSION__

This macro expands to the C Standard's version number, a long integer constant of the
form yyyymmL where yyyy and mm are the year and month of the Standard version.
This signifies which version of the C Standard the compiler conforms to.

This macro is not defined if the -traditional option is used, nor when compiling C++ or
Objective-C.

• __STDC_HOSTED__

This macro is defined, with value 1, if the compiler's target is a hosted environment. A
hosted environment has the complete facilities of the standard C library available.

• __cplusplus

This macro is defined when the C++ compiler is in use. You can use __cplusplus to test
whether a header is compiled by a C compiler or a C++ compiler. This macro is similar
to __STDC_VERSION__, in that it expands to a version number.

Tips
• Do use the preprocessor directives as much as possible in your program as it

makes the program more robust.
• Using the #defined and #ifndef directives help in prevent multiple definitions in

header files.
• Conditional compilation with the use of preprocessor directives provides a very

easy way for turning the debug code on and off.
• A macro is a fragment of code which has been given a name. Whenever the name

is used, it is replaced by the contents of the macro.
• Macros can be used for writing clear and easily comprehensible code.
• Do remember that whenever the macro name is used, it is replaced by the contents

of the macro.

Summary
The preprocessor is a program that runs prior to compilation and potentially modifies a
source code file. It may add code in response to the #include directive, conditionally
include code in response to #if, #ifdef, #ifndef directives or define constants using the
#define directive.

A simple macro is a kind of abbreviation. It is a name which stands for a fragment of
code. Some standard pre-defined Macros include __FILE__, __LINE__, __DATE__,
__TIME__ etc.

Chapter 6

Bitwise Operators .. 1
List of bitwise operators .. 2
Example -- Convert to binary with bit operators .. 3

Problems ... 3
Typedef ... 4
Macros .. 5

Macro Arguments .. 5
Typecasting .. 6

Types of Typecasting .. 6
Assertions ... 7

Assertions and error-checking ... 7
Turning assertions off .. 8

The switch and case keywords ... 8
Summary .. 11
Tips ... 10

Bitwise Operators
An operator that manipulates individual bits is called a bitwise operator. The most
familiar operators are the addition operator (+) etc and these operators work with bytes or

Bitwise Operators and Macros 2

groups of bytes. Occasionally, however, programmers need to manipulate the bits within
a byte.

C++ provides operators to work with the individual bits in integers. For this to be useful,
we must have some idea of how integers are represented in binary. For example the
decimal number 3 is represented as 11 in binary and the decimal number 5 is represented
as 101 in binary.

List of bitwise operators
Purpose Operator example
complement ~i
and i&j
exclusive or i^j
inclusive or i|j
shift left i<<n
shift right i>>n

• can be used on any integer type (char, short, int, etc.)
• right shift might not do sign extension
• used for unpacking compressed data

Bitwise AND operator

 0 AND 0 = 0
 0 AND 1 = 0
 1 AND 0 = 0

1 AND 1 = 1

Bitwise OR operator

 0 OR 0 = 0
 0 OR 1 = 1
 1 OR 0 = 1

1 OR 1 = 1

Bitwise OR operator

0 XOR 0 = 0
 0 XOR 1 = 1 x XOR 0 = x

Bitwise Operators and Macros 3

 1 XOR 0 = 1 x XOR 1 = ~x
 1 XOR 1 = 0

Bitwise Left-Shift is useful when to want to MULTIPLY an integer (not floating point
numbers) by a power of 2. The operator, like many others, takes 2 operands like this:
 a << b
 This expression returns the value of a multiplied by 2 to the power of b.

Bitwise Right-Shift does the opposite, and takes away bits on the right. Suppose we had:
 a >> b
This expression returns the value of a divided by 2 to the power of b.

Applications of Bitwise operators

Bitwise operators have two main applications. The first is using them to combine several
values into a single variable. Suppose you have a series of flag variables which will
always have only one of two values: 0 or 1 (this could also be true or false). The smallest
unit of memory you can allocate to a variable is a byte, which is eight bits. But why
assign each of your flags eight bits, when each one only needs one bit? Using bitwise
operators allows you to combine data in this way.

Example -- Convert to binary with bit operators
This program reads integers and prints them in binary, using the shift and "and" operators
to extract the relevant bits.

// Print binary representation of integers

#include <iostream>
//using namespace std;
void main() {
 int n;
 while (cin >> n) {
 cout << "decimal: " << n << endl;
 // print binary with leading zeros
 cout << "binary : ";
 for (int i=31; i>=0; i--) {
 int bit = ((n >> i) & 1)
 cout << bit;
 }
 cout << endl;
 }//end loop }

Problems
Here are some modifications that could be made to this code.

Bitwise Operators and Macros 4

1. It's difficult to read long sequences of digits. It's common to put a space after
every 4 digits.

2. Suppress leading zeros. This is done most easily by defining a bool flag, setting it
to false at the beginning of each conversion, setting it to true when a non-zero bit
is encountered, and printing zeros only when this flag is set to true. Then there's
the case of all zeros that requires another test.

Typedef

A typedef declaration lets you define your own identifiers that can be used in place of
type specifiers such as int, float, and double. The names you define using typedef are
NOT new data types. They are synonyms for the data types or combinations of data types
they represent.

A typedef declaration does not reserve storage. When an object is defined using a
typedef identifier, the properties of the defined object are exactly the same as if the
object were defined by explicitly listing the data type associated with the identifier.

The following statements declare LENGTH as a synonym for int, and then use this
typedef to declare length, width, and height as integral variables.

typedef int LENGTH;

LENGTH length, width, height;

The following declarations are equivalent to the above declaration:

int length, width, height;

Similarly, you can use typedef to define a struct type. For example:

typedef struct {

 int scruples;

 int drams;

 int grains;

 } WEIGHT;

The structure WEIGHT can then be used in the following declarations:

WEIGHT chicken, cow, horse, whale;

Bitwise Operators and Macros 5

The proposed feature is intended to be a natural application of existing template syntax to
the existing typedef keyword. Interactions with the rest of the language are limited
because typedef templates do not create a new type or extend the type system in any
way; they only create synonyms for other types.

Macros

A macro is a fragment of code which has been given a name. Whenever the name is used,
it is replaced by the contents of the macro. There are two kinds of macros. They differ
mostly in what they look like when they are used. Object-like macros resemble data
objects when used, function-like macros resemble function calls.

You may define any valid identifier as a macro, even if it is a C keyword. The
preprocessor does not know anything about keywords. This can be useful if you wish to
hide a keyword such as const from an older compiler that does not understand it.
However, the preprocessor operator defined can never be defined as a macro, and C++'s
named operators cannot be macros when you are compiling C++.

Macro Arguments

Function-like macros can take arguments, just like true functions. To define a macro that
uses arguments, you insert parameters between the pair of parentheses in the macro
definition that make the macro function-like. The parameters must be valid C identifiers,
separated by commas and optionally whitespace.

To invoke a macro that takes arguments, you write the name of the macro followed by a
list of actual arguments in parentheses, separated by commas. The invocation of the
macro need not be restricted to a single logical line--it can cross as many lines in the
source file as you wish. The number of arguments you give must match the number of
parameters in the macro definition. When the macro is expanded, each use of a parameter
in its body is replaced by the tokens of the corresponding argument. (You need not use all
of the parameters in the macro body.)

As an example, here is a macro that computes the minimum of two numeric values, as it
is defined in many C programs, and some uses.

#define min(X, Y) ((X) < (Y) ? (X) : (Y))
 x = min(a, b); ==> x = ((a) < (b) ? (a) : (b));
 y = min(1, 2); ==> y = ((1) < (2) ? (1) : (2));
 z = min(a + 28, *p); ==> z = ((a + 28) < (*p) ? (a + 28) : (*p));

Bitwise Operators and Macros 6

Typecasting
Typecasting is making a variable of one type, act like another type for one single
application. To typecast something, simply put the type of variable you want the actual
variable to act as inside parentheses in front of the actual variable. For example (char)a
will make 'a' function as a char.

Types of Typecasting

There are two types of typecasting:

• Implicit typecasting
• Explicit typecasting (coercion)

Implicit typecasting is done by the compiler itself while the explicit typecasting is done
by us, the developers.

Implicit type casting (coercion) is further divided in two types

• Promotion
• Demotion

Example:

#include <iostream.h>
int main()
{
 cout<<(char)65;

//The (char) is a typecast, telling the computer to
//interpret the 65 as alphabet’s first letter “A”
//character, not as a number. It is going to give the
//ASCII output of the equivalent of the number 65(It
should //be the letter A).
 return 0;
}

One use for typecasting for is when you want to use the ASCII characters. For example,
assume that we want to create our own chart of all 256 ASCII characters. To do this, we
will need to use to typecast to allow us to print out the integer as its character equivalent.

#include <iostream.h>
int main()
{
 for(int x=0; x<256; x++)
 { //The ASCII character set is from 0 to 255
 cout<<x<<". "<<(char)x<<" ";
 //Note the use of the int version of x to
 //output a number and the use of (char) to

Bitwise Operators and Macros 7

 // typecast the x into a character
 //which outputs the ASCII character that
 //corresponds to the current number
 }
 return 0;
}

Assertions
An assertion statement specifies a condition at some particular point in your program. An
assertion specifies that a program satisfies certain conditions at particular points in its
execution. There are three types of assertion:

Preconditions
• Specify conditions at the start of a function.

Post conditions
• Specify conditions at the end of a function.

Invariants
• Specify conditions over a defined region of a program.

An assertion violation indicates a bug in the program. Thus, assertions are an effective
means of improving the reliability of programs. In other words, they are a systematic
debugging tool.

Assertions and error-checking
It is important to distinguish between program errors and run- time errors:

1. A program error is a bug, and should never occur.
2. A run-time error can validly occur at any time during program execution.

Assertions are not a mechanism for handling run-time errors. For example, an assertion
violation caused by the user inadvertently entering a negative number when a positive
number is expected is poor program design. Cases like this must be handled by
appropriate error-checking and recovery code (such as requesting another input), not by
assertions.

Realistically, of course, programs of any reasonable size do have bugs, which appear at
run-time. Exactly what conditions are to be checked by assertions and what by run-time
error- checking code is a design issue. Assertions are very effective in reusable libraries,
for example, since i) the library is small enough for it to be possible to guarantee bug-free
operation, and ii) the library routines cannot perform error- handling because they do not
know in what environment they will be used. At higher levels of a program, where
operation is more complex, run-time error-checking must be designed into the code.

Bitwise Operators and Macros 8

Turning assertions off
By default, ANSI C compilers generate code to check assertions at run-time. Assertion-
checking can be turned off by defining the NDEBUG flag to your compiler, either by
inserting
 #define NDEBUG
in a header file such as stdhdr.h, or by calling your compiler with the -dNDEBUG option:
 cc -dNDEBUG ...
This should be done only you are confident that your program is operating correctly, and
only if program run-time is a pressing concern.

The switch and case keywords

The switch-case statement is a multi-way decision statement. Unlike the multiple
decisions statement that can be created using if-else, the switch statement evaluates the
conditional expression and tests it against numerous constant values. The branch
corresponding to the value that the expression matches is taken during execution.

The value of the expressions in a switch-case statement must be an (integer, char, short,
long), etc. Float and double are not allowed.

The syntax is :

 switch(expression)
 {
 case constant-expression1: statements1;
 [case constant-expression2: statements2;]
 [case constant-expression3: statements3;]
 [default : statements4;]
 }

The case statements and the default statement can occur in any order in the switch
statement. The default clause is an optional clause that is matched if none of the
constants in the case statements can be matched.

Consider the example shown below:

 switch(Grade)
 {
 case 'A' : printf("Excellent");
 case 'B' : printf("Good");
 case 'C' : printf("OK");
 case 'D' : printf("Mmmmm....");
 case 'F' : printf("You must do better than this");
 default : printf("What is your grade anyway?");

Bitwise Operators and Macros 9

 }

Here, if the Grade is 'A' then the output will be

 Excellent
 Good
 OK
 Mmmmm....
 You must do better than this
 What is your grade anyway?

This is because, in the 'C' switch statement, execution continues on into the next case
clause if it is not explicitly specified that the execution should exit the switch statement.
The correct statement would be:

 switch(Grade)
 {

 case 'A' : printf("Excellent");
 break;

 case 'B' : printf("Good");
 break;

 case 'C' : printf("OK");
 break;

 case 'D' : printf("Mmmmm....");
 break;

 case 'F' : printf("You must do better than this");
 break;

 default : printf("What is your grade anyway?");
 break;
 }

Although the break in the default clause (or in general, after the last clause) is not
necessary, it is good programming practice to put it in anyway.

An example where it is better to allow the execution to continue into the next case
statement:

 char Ch;

Bitwise Operators and Macros 10

 .
 .
 switch(Ch)
 {
 /* Handle lower-case characters */
 case 'a' :
 case 'b' :
 .
 .
 .
 case 'z' :
 printf("%c is a lower-case character.\n", Ch);
 printf("Its upper-case is %c.\n" toupper(Ch));
 break;

 /* Handle upper-case characters */
 case 'A' :
 case 'B' :
 .
 .
 .
 case 'Z' :
 printf("%c is a upper-case character.\n", Ch);
 printf("Its lower-case is %c.\n" tolower(Ch));
 break;

 /* Handle digits and special
characters */

 default :
 printf("%c is not in the alphabet.\n", Ch);
 break;
 }
 ..

Tips

• Take extreme care while using the Bitwise operators as these operates on
individual bits.

• Bitwise Left Shift << operator is useful when we to want to multiply an integer by

a power of two.

• Bitwise Right Shift >> operator is useful when we to want to divide an integer by
a power of two.

Bitwise Operators and Macros 11

• Do remember that when an object is defined using a typedef identifier, the

properties of the defined object are exactly the same as if the object were defined
by explicitly listing the data type associated with the identifier.

• To invoke a macro that takes arguments, you write the name of the macro

followed by a list of actual arguments in parentheses, separated by commas.

• Any type-casting done by us is considered to be the explicit type casting. Implicit
typecasting is always done by the compiler

• Do remember that when we use typecasting, then the data type of one variable is

temporarily changed, while the original data type remains the same

• Assertions are an effective means of improving the reliability of programs. They
are a systematic debugging tool.

• The value of the expressions in a switch-case statement must be an (integer, char,

short, long), etc. Float and double are not allowed.

Summary
In this lecture, we have learned about the three major bitwise operators AND, OR, XOR.
Bitwise operators operate on individual bits.

Using “typedefs” provide an easy way to avoid the long names during the declarations
and thus make our code simpler. We have also discussed about the typecasting. It is
making a variable of one type, act like another type for one single application. The two
types of type casting include the implicit type casting and the explicit type casting.

In C, the assertions are implemented with standard assert macro, the argument to assert
must be true when the macro is executed, otherwise the program aborts and printouts an
error message.

The switch-case statement is a multi-way decision statement. Unlike the multiple
decisions statement that can be created using if-else, the switch statement evaluates the
conditional expression and tests it against numerous constant values.

Chapter 7

Calling Convention ... 2

Difference between __stdcall and __cdecl calling convention 2
Default Calling Convention for C programmes .. 2
Default Calling Convention for Windows Programmes ... 3

Storage Class Modifiers .. 4
1. Auto storage class ... 4

Example: ... 4
2. Register - Storage Class .. 5

Initialization .. 5
3. Static Storage Class... 6

Example: ... 6
Example: ... 6
Initialization .. 7
Storage Allocation .. 7
Block Scope Usage ... 7
File Scope Usage... 8

4. Extern Storage Class ... 8
Initialization .. 9
Storage Allocation .. 9

Scope, Initialization and Lifetime of Variable .. 9
Points to be considered: .. 10

Stack .. 10
Note ... 10
Application of Stacks .. 11

Const Access Modifier .. 12
Constant Variables .. 12

Command Line Arguments ... 12
Summary ... 13
Tips ... 13

Calling Conventions, Storage classes and Variable Scope 2

Calling Convention

To call a function, you must often pass parameters to it. There are plenty of ways how
this can be done. You either pass the parameters on the calling stack (place where the
processor also places the temporary pointer to the code following the call, so it knows
where to continue after the call was done), or you pass some of them in registers. Floating
point values can also be passed on the stack of the coprocessor.

Calling conventions rule how parameters will be passed (stack only or registers), in
which order they will be passed (from left to right, i.e. in the same order as they appear in
source code, or the other way around), and which code will clean the stack after use, if
necessary. There are a lot of possible combinations:

• pascal, the original calling convention for old Pascal programs;
• register, the current default calling convention in Delphi;
• cdecl, the standard calling convention for C and C++ code;
• stdcall, the default cross-language calling convention on 32-bit Windows;
• safecall, a special case of stdcall, which can be ignored for now.

Difference between __stdcall and __cdecl calling convention
cdecl and __stdcall just tells the compiler whether the called function or the calling
function cleans up the stack. In __stdcall calling convention, the called function cleans up
the stack when it is about to return. So if it is called in a bunch of different places, all of
those calls do not need to extra code to clean up the stack after the function call.

In __cdecl calling convention, it is the caller function that is responsible for cleaning the
stack, so every function call must also need to include extra code to clean up the stack
after the function call.

Default Calling Convention for C programmes
The __cdecl is the default calling convention for C programs. In this calling convention,
the stack is cleaned up by the caller. The __cdecl calling convention creates larger
executables than __stdcall, because it requires each function call to include stack cleanup
code.

The following list shows the implementation of _cdecl calling convention.

Element Implementation

Argument-passing order Right to left

Stack-maintenance responsibility Calling function pops the arguments from the

Calling Conventions, Storage classes and Variable Scope 3

stack

Name-decoration convention Underscore character (_) is prefixed to names

Case-translation convention No case translation performed

Default Calling Convention for Windows Programmes

The __stdcall calling convention is used to call Win32 API functions. The callee cleans
the stack

Functions that use this calling convention require a function prototype.

return-type __stdcal l function-name[(argument-list)]

The following list shows the implementation of this calling convention.

Element Implementation

Argument-passing order Right to left.

Argument-passing convention By value, unless a pointer or reference type is
passed.

Stack-maintenance responsibility Called function pops its own arguments from the
stack.

Name-decoration convention An underscore (_) is prefixed to the name. The
name is followed by the at sign (@) followed by
the number of bytes (in decimal) in the argument
list. Therefore, the function declared as int func(
int a, double b) is decorated as follows:
_func@12

Case-translation convention None

Calling Conventions, Storage classes and Variable Scope 4

Storage Class Modifiers
C has a concept of 'Storage classes' which are used to define the scope (visibility) and life
time of variables and/or functions.

1. Auto storage class

The default storage class for local variables is “auto storage class”. The auto storage class
specifier lets you define a variable with automatic storage; its use and storage is restricted
to the current block. The storage class keyword auto is optional in a data declaration. It is
not permitted in a parameter declaration. A variable having the auto storage class
specifier must be declared within a block. It cannot be used for file scope declarations.

Because automatic variables require storage only while they are actually being used,
defining variables with the auto storage class can decrease the amount of memory
required to run a program. However, having many large automatic objects may cause you
to run out of stack space.

Example:
 {
 int Count;
 auto int Month;
 }
The example above defines two variables with the same storage class. auto can only be
used within functions, i.e. local variables.

Declaring variables with the auto storage class can also make code easier to maintain,
because a change to an auto variable in one function never affects another function
(unless it is passed as an argument).

Initialization

You can initialize any auto variable except parameters. If you do not initialize an
automatic object, its value is indeterminate. If you provide an initial value, the expression
representing the initial value can be any valid C expression. For structure and union
members, the initial value must be a valid constant expression if an initializer list is used.
The object is then set to that initial value each time the program block that contains the
object's definition is entered.

Note: If you use the goto statement to jump into the middle of a block, automatic
variables within that block are not initialized.

Calling Conventions, Storage classes and Variable Scope 5

Storage Allocation

Objects with the auto storage class specifier have automatic storage duration. Each time a
block is entered; storage for auto objects defined in that block is made available. When
the block is exited, the objects are no longer available for use.

If an auto object is defined within a function that is recursively invoked, memory is
allocated for the object at each invocation of the block.

2. Register - Storage Class
Register storage class is used to define local variables that should be stored in a register
instead of RAM. This means that the variable has a maximum size equal to the register
size (usually one word) and cant have the unary '&' operator applied to it (as it does not
have a memory location).
{
 register int Miles;
}

Register should only be used for variables that require quick access - such as counters. It
should also be noted that defining 'register' does not mean that the variable will be stored
in a register. It means that it MIGHT be stored in a register - depending on hardware and
implementation restrictions.

• The register storage class specifier indicates to the compiler that a heavily used
variable (such as a loop control variable) within a block scope data definition or a
parameter declaration should be allocated a register to minimize access time.

• It is equivalent to the auto storage class except that the compiler places the object,

if possible, into a machine register for faster access.

• An object having the register storage class specifier must be defined within a

block or declared as a parameter to a function.

The following example lines define automatic storage duration objects using the
register storage class specifier:

 register int score1 = 0, score2 = 0;
 register unsigned char code = 'A';
 register int *element = &order[0];

Initialization

You can initialize any register object except parameters. If you do not initialize an
automatic object, its value is indeterminate. If you provide an initial value, the expression

Calling Conventions, Storage classes and Variable Scope 6

representing the initial value can be any valid C expression. For structure and union
members, the initial value must be a valid constant expression if an initializer list is used.
The object is then set to that initial value each time the program block that contains the
object's definition is entered.

• Objects with the register storage class specifier have automatic storage duration.
Each time a block is entered, storage for register objects defined in that block are
made available. When the block is exited, the objects are no longer available for
use.

• If a register object is defined within a function that is recursively invoked, the

memory is allocated for the variable at each invocation of the block.

3. Static Storage Class

Static is the default storage class for global variables. An object having the static storage
class specifier can be defined within a block or at file scope. If the definition occurs
within a block, the object has no linkage. If the definition occurs at file scope, the object
has internal linkage.

Example:
Two variables below (count and road) both have a static storage class. Static variables
can be 'seen' within all functions in this source file. At link time, the static variables
defined here will not be seen by the object modules that are brought in.

 static int Count;
 int Road;
 main()
 {
 printf("%d\n", Count);
 printf("%d\n", Road);
 }

'static' can also be defined within a function! If this is done the variable is initialized at
run time but is not re initialized when the function is called.

Example:
There is one very important use for 'static'. Consider this bit of code.

char * func(void);

main()
{
 char *Text1;

Calling Conventions, Storage classes and Variable Scope 7

 Text1 = func();
}

char * func(void)
{
 char Text2[10]="martin";
 return(Text2);
}

Now, 'func' returns a pointer to the memory location where 'text2' starts BUT text2 has a
storage class of 'auto' and will disappear when we exit the function and could be
overwritten but something else. The answer is to specify:

 static char Text[10]="martin";

The storage assigned to 'text2' will remain reserved for the duration of the program.

Initialization

We can initialize any static object with a constant expression or an expression that
reduces to the address of a previously declared extern or static object, possibly modified
by a constant expression. If you do not provide an initial value, the object receives the
value of zero of the appropriate type.

Storage Allocation

Storage is allocated at compile time for static variables that are initialized. Un initialized
static variables are mapped at compile time and initialized to 0 (zero) at load time. This
storage is freed when the program finishes running. Beyond this, the language does not
define the order of initialization of objects from different files.

Block Scope Usage

Use static variables to declare objects that retain their value from one execution of a
block to the next execution of that block. The static storage class specifier keeps the
variable from being reinitialized each time the block, where the variable is defined, runs.
For example:

static float rate = 10.5;

Initialization of a static array is performed only once at compile time. The following
examples show the initialization of an array of characters and an array of integers:

static char message[] = "startup completed";
static int integers[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

Calling Conventions, Storage classes and Variable Scope 8

File Scope Usage

The static storage class specifier causes the variable to be visible only in the file where it
is declared. Files, therefore, cannot access file scope static variables declared in other
files.

Restrictions
We cannot declare a static function at block scope.

4. Extern Storage Class

Extern defines a global variable that is visible to all object modules. When you use
'extern' the variable cannot be initialized as all it does is to point the variable name at a
storage location that has been previously defined.

With extern keyword, we are actually pointing to such a variable that is already been
defined in some other file.

 Source 1 Source 2
 -------- --------

 extern int count; int count=5;

 write() main()
 { {

 printf("count is %d\n", count); write();
 }
}
Count in 'source 1' will have a value of 5. If source 1 changes the value of count - source
2 will see the new value

The extern storage class specifier lets you declare objects and functions that several
source files can use. All object declarations that occur outside a function and that do not
contain a storage class specifier declare identifiers with external linkage. All function
definitions that do not specify a storage class define functions with external linkage.

An extern variable, function definition, or declaration also makes the described variable
or function usable by the succeeding part of the current source file. This declaration does
not replace the definition. The declaration is used to describe the variable that is
externally defined.

Calling Conventions, Storage classes and Variable Scope 9

If a declaration for an identifier already exists at file scope, any extern declaration of the
same identifier found within a block refers to that same object. If no other declaration for
the identifier exists at file scope, the identifier has external linkage.

An extern declaration can appear outside a function or at the beginning of a block. If the
declaration describes a function or appears outside a function and describes an object
with external linkage, the keyword extern is optional.

If we do not specify a storage class specifier, the function has external linkage.

Initialization

We can initialize any object with the extern storage class specifier at file scope. Similarly,
we can also initialize an extern object with an initializer that must either:

• Appear as part of the definition and the initial value must be described by a
constant expression. OR

• Reduce to the address of a previously declared object with static storage duration.
This object may be modified by adding or subtracting an integral constant
expression.

If we do not explicitly initialize an extern variable, its initial value is zero of the
appropriate type. Initialization of an extern object is completed by the time the program
starts running.

Storage Allocation

Storage is allocated at compile time for extern variables that are initialized. Un-
initialized variables are mapped at compile time and initialized to 0 (zero) at load time.
This storage is freed when the program finishes running.

Scope, Initialization and Lifetime of Variable
In the following section, we will discuss the scope and lifetime of variables.

Example:
Consider the example below:

 int main ()
 {
 float temp = 1.1;
 int a;
 int b;
 printf ("Value for a and b [int]: ");
 scanf ("%d%d", &a, &b);

Calling Conventions, Storage classes and Variable Scope 10

 if (a < b)
 {
 int temp = a; /* this "temp" hides the other one */
 printf ("Smallest local ""temp"" = a*2 = %d\n", 2*temp);
 } /* end of block; local "temp" deleted */

 else
 {
 int temp = b; /* another "temp" hides the other one */
 printf ("Smallest local ""temp"" = b*3 = %d\n", 3*temp);
 } /* end of block; other local "temp" deleted */

 printf ("Global ""temp"" used: %f\n", a * b + temp);

 return 0;
 }

Points to be considered:

• each { } block creates a new scope
• variables declared and initialized in a scope are deleted when execution leaves

scope
• note the f-format to print result with global variable

Stack
A stack is an abstract data type that permits insertion and deletion at only one end called
the top. A stack is a collection of items in which only the most recently added item may
be removed. The latest added item is at the top. Basic operations are push and pop.

Note

Description of elements: A stack is defined to hold one type of data element. Only
the element indicated by the top can be accessed. The elements are related to each
other by the order in which they are put on the stack.

Description of operations: Among the standard operations for a stack are:

• insert an element on top of the stack (push)
• remove the top element from the stack (pop)
• Determine if the stack is empty.

An example of a stack is the pop-up mechanism that holds trays or plates in a cafeteria.
The last plate placed on the stack (insertion) is the first plate off the stack (deletion). A
stack is sometimes called a Last-In, First-Out or LIFO data structure. Stacks have

Calling Conventions, Storage classes and Variable Scope 11

many uses in computing. They are used in solving such diverse problems as "evaluating
an expression" to "traversing a maze."

Application of Stacks

A stack data structure is used when subprograms are called. The system must remember
where to return after the called subprogram has executed. It must remember the contents
of all local variables before control was transferred to the called subprogram. The return
from a subprogram is to the instruction following the call that originally transferred
control to the subprogram. Therefore, the return address and the local variables of the
calling subprogram must be stored in a designated area in memory. For example,
suppose function A has control and calls B which calls C which calls D. While D is
executing, the return stack might look like this:

The first "return" would return (from D) to the return address in Function C and the
return stack would then look like:

The last function called is the first one completed. Function C cannot finish execution
until Function D has finished execution. The sequence in which these functions are
executed is last-in, first-out. Therefore, a stack is the logical data structure to use for
storing return addresses and local variables during subprogram invocations. You can see
that the "stack" keeps the return addresses in the exact order necessary to reverse the
steps of the forward chain of control as A calls B, B calls C, C calls D.

Calling Conventions, Storage classes and Variable Scope 12

Const Access Modifier
The const keyword is used to create a read only variable. Once initialized, the value of
the variable cannot be changed but can be used just like any other variable.

const int i = 10; // “i ” cannot be changed in the program.

Constant Variables
 Consider the following examples:

• Constant pointer to variable data:

 char * const ptr = buff. // constant pointer to variable data
 *ptr = ‘a’;
 ptr = buff2; // it will be an error

Since we have declared ptr as a “constant pointer to variable data”, so we can change the
contents of the place where ptr is pointing at, i.e. data but being a constant variable, the
ptr value i.e. the address it contains cannot be modified.

• Variable pointer to Constant data:

 const char * ptr = buff. //variable pointer to constant data
 *ptr = ‘a’; // it will be an error
 ptr = buf2;

Here, ptr has been declared as “variable pointer to constant data”. In this case, the data to
which the ptr is pointing to remains constant and cannot be modified after initialization.
The contents of ptr (address) are variable and we can change the contents of ptr.

Command Line Arguments
C provides a fairly simple mechanism for retrieving command line parameters entered by
the user. It passes an argv parameter to the main function in the program.

 int main(int argc, char *argv[])
 {
 … … …
 }

In this code, the main program accepts two parameters, argv and argc. The argv
parameter is an array of pointers to string that contains the parameters entered when the
program was invoked at the command line. The argc integer contains a count of the
number of parameters.

Calling Conventions, Storage classes and Variable Scope 13

Tips
• Remember the calling conventions used by the functions you are using. It will

give you a clearer image of what happens when some parameters are passed to a
function.

• Automatic variables require storage only while they are actually being used, so

defining variables with the auto storage class can decrease the amount of memory
required to run a program.

• Avoid defining many large automatic objects as it may cause you to run out of

stack space.

• Register access modifier should only be used for variables that require quick
access - such as counters.

• Use static variables to declare objects that retain their value from one execution of

a block to the next execution of that block since the static storage class specifier
keeps the variable from being reinitialized each time the block runs.

• An extern declaration can appear outside a function or at the beginning of a block.

If the declaration describes a function or appears outside a function and describes
an object with external linkage, the keyword extern is optional.

• Please note that variables declared and initialized in a scope are deleted when

execution leaves scope.

• A stack data structure is used when subprograms are called. It is the logical data
structure to use for storing return addresses and local variables during subprogram
invocations.

• Do not try to change the value of a constant variable declared with “const”

keyword after it has been initialized.

Summary

The calling conventions tells us in which order the parameters will be passed in a
function and whether the calling function or the called function is responsible for the
cleaning of the stack.

The default calling convention for C programs is __cdecl and in this convention, the
caller is responsible for cleaning the stack after the function call.

Calling Conventions, Storage classes and Variable Scope 14

Similarly, the default calling convention for the windows programs is __stdcall. Here the
called function itself has to do the stack clean up and so no extra code is required for
stack clean up with each function call. It is very obvious that the __cdecl calling
convention creates larger executables because it requires each function call to include the
clean up code.

Storage classes are used to describe the scope and visibility of the variables and
functions. The common storage classes discussed above are auto, register, static, and
extern etc.

In the lifetime of variables, we have discussed that each { } block creates a new scope.
Variables declared and initialized in a scope are deleted when execution leaves that scope

The const keyword is used to create a read only variable. Thus constant variables are not
allowed to be modified after initialization.

Command line arguments provide an easy way to pass some parameters to the
programme in the main function when the programme execution starts. When using an
executable that requires startup arguments to debug, you can type these arguments at the
command line, or from within the development environment.

Chapter 8

CHAPTER 8 .. 1
8.1 BRIEF HISTORY OF WIN32 ... 2
8.2 WINDOWS COMPONENTS .. 3
8.2.1 KERNEL .. 3
8.2.2 GDI (GRAPHICS DEVICE INTERFACE) ... 3
8.2.3 USER .. 7
8.3 HANDLES IN WINDOWS ... 7
8.4 OUR FIRST WIN32 PROGRAM ... 8
8.5 SUMMARY .. 9

Windows Basics

2

8.1 Brief History of Win32
Before starting windows programming lets take a short look at the history of Windows.
• In 1983 Windows announced for the first time in history.
• In November 1985 Windows 1.0 is launched.
• In April 1987 Windows 2.0 shipped.
• In 1988 Windows/386 emerged out. This version of Windows supported Multiple

DOS boxes. DOS boxes are the Consol windows which are enabled to get input or
show output only in text form or character form and no GUI is supported in this mode.

• November 1989 Win word 1.0 finally shipped.
• In May 1990 Windows 3.0 shipped. It is designed to operate in 3 Modes. These are

a. Real Mode or 8086 mode
b. Protected Mode or 286 mode
c. Enhanced or 386 mode with multiple DOS boxes and with support of Virtual

Memory. In virtual Memory some of the area on Hard disk is used as system
Memory.

• Late 1991 Windows version 3.1 released. This version of Windows came with the

Multimedia extensions that later became the part of Windows standard builds.
• Late 1992 Windows NT beta version released. And with this version Win32 API also

published. Windows NT offers preemptive Multitasking.
Multitasking is of two types.

a. Preemptive Multitasking: In Preemptive multi tasking, the operating system
parcels out CPU time slices to each program.
b. Cooperative or Non Preemptive Multitasking: In this type of multitasking
each program can control the CPU for as long as it needs it. If a program is not
using the CPU it can allow another program to use it temporarily.

• Summer 1993, Windows NT version 3.1 is launched. This version of windows is

enabled to run as well, on MIPS and Alpha CPU’s as Intel x86 CPU.
• Summer 1994 Windows version 3.5 is launched.
• In August 1995 Windows95 shipped. Windows95 was designed for home computing.
• September 1995 Windows version 3.51 released. And it is considered as the most

solid version of NT for servers.
• Summer 1996, Support for the MIPS and PowerPC machines are dropped.
• June 1998, Windows98 released with built in Internet Explorer version 4.

Windows Basics

3

• September 1998, Visual Studio 6.0 released. Visual Studio6.0 consists of three
languages i.e. Visual C++, Visual Basic and Visual J++. Visual studio comes in three
categories, i.e. learner or student edition, professional and Enterprise edition.
Visual C++ is a compiler that will be using in the Windows programming course.
This Visual C++ compiler would be the part of Professional or Enterprise Visual
Studio package.

• Feb 2000 Windows 2000 released with major improvements. It is proved to be a much

stable version than the earlier versions of Microsoft Windows series of Operating
systems. It is also called Windows NT5.

8.2 Windows Components
Microsoft Windows consists of three important components. These are:

1. Kernel
2. GDI (Graphics Device Interface)
3. User

8.2.1 Kernel
Kernel is a main module of the operating system. This provides system services for
managing threads, memory, and resources.
Kernel has to perform very important responsibilities e.g.

1. Process Management
2. File Management
3. Memory Management (System and Virtual Memory)

In Windows Operating System Kernel is implemented in the form of Kernel32.dll file.
The Kernel is responsible for scheduling and synchronizing threads, processing,
exception and interrupts. Loading applications and managing memory. Kernel is
responsible for the system stability and efficiency.

8.2.2 GDI (Graphics Device Interface)

GDI is a subsystem responsible for displaying text and images on display devices and
printers. The GDI processes Graphical function calls from a Windows-based application.
It then passes those calls to the appropriate device driver, which generates the output on
the display hardware. By acting as a buffer between applications and output devices, the
GDI presents a device-independent view of the world for the application while interacting
in a device-dependent format with the device.

GDI is responsible to display application’s graphics objects on Screen and Printer. The
Applications that use GDI need not worry about Graphics Hardware because GDI

Windows Basics

4

provides the suitable device independent interface. In GDI subsystem, anything we want
to display or print, there’s Device context or DC. Device context or DC is a logical term
in windows. Whenever we have to display something, we get DC of display device, and
whenever we have to print something we get DC of printer device.
GDI is implemented in the form of library GDI32.dll. This library contains all the APIs
that need to draw graphics or text objects. We can write text, and draw rectangles,
polygons, lines, points, etc by using Pens and Brushes:

Pens

A pen is a graphics tool that an application for Microsoft Windows uses to draw lines and
curves. Drawing applications use pens to draw freehand lines, straight lines, and curves.
Computer-aided design (CAD) applications use pens to draw visible lines, hidden lines,
section lines, center lines, and so on. Word processing and desktop publishing
applications use pens to draw borders and rules. Spreadsheet applications use pens to
designate trends in graphs and to outline bar graphs and pie charts.

Each pen consists of three attributes: style, width, and color. While no limits are imposed
on the width and color of a pen, the pen's style must be supported by the operating
system. These styles are illustrated in the following figure.

Figure 1 Pens types

Brushes

A brush is a graphics tool that a Windows based application uses to paint the interior of
polygons, ellipses, and paths. Drawing applications use brushes to paint shapes; word
processing applications use brushes to paint rules; computer-aided design (CAD)
applications use brushes to paint the interiors of cross-section views; and spreadsheet
applications use brushes to paint the sections of pie charts and the bars in bar graphs.

Solid

Dash

Dot

Dash-Dot

Dash-Dot-Dot

Null

Windows Basics

5

There are two types of brushes: logical and physical. A logical brush is one that you
define in code as the ideal combination of colors and/or pattern that an application should
use to paint shapes. A physical brush is one that a device driver creates, which is based
on your logical-brush definition.

Brush Origin

When an application calls a drawing function to paint a shape, Windows positions a
brush at the start of the paint operation and maps a pixel in the brush bitmap to the
window origin of the client area. (The window origin is the upper-left corner of the
window's client area.) The coordinates of the pixel, that Windows maps, are called the
brush origin.

The default brush origin is located in the upper-left corner of the brush bitmap at the
coordinates (0,0). Windows then copies the brush across the client area, forming a pattern
that is as tall as the bitmap. The copy operation continues, row by row, until the entire
client area is filled. However, the brush pattern is visible only within the boundaries of
the specified shape. (Here, the term bitmap is used in its most literal sense—as an
arrangement of bits—and does not refer exclusively to bits stored in an image file).

There are instances when the default brush origin should not be used. For example, it
may be necessary for an application to use the same brush to paint the backgrounds of its
parent and child windows and blend a child window's background with that of the parent
window.

The following illustration shows a five-pointed star filled by using an application-defined
brush. The illustration shows a zoomed image of the brush, as well as the location to
which it was mapped at the beginning of the paint operation.

Windows Basics

6

Figure 2 Brush Origin (Description from MSDN)

Logical Brush Types

Logical brushes come in three varieties: solid, pattern, and hatched.

 A solid brush consists of a color or pattern defined by some element of the
Windows user interface (for example, you can paint a shape with the color and
pattern conventionally used by Windows to display disabled buttons).

 A hatched brush consists of a combination of a color and of one of the six patterns
defined by Win32. The following table illustrates the appearance of these
predefined patterns.

Brush Style Illustration

Backward diagonal

Cross-hatched

Diagonally cross-hatched

Forward diagonal

Windows Basics

7

Horizontal

Vertical

Figure 3 Brush Styles

8.2.3 User

User component manages all the user interface elements.
User interface elements include Dialogs, Menus, Text, Cursor, Controls, Clipboard, etc.
User component is implemented in User32.dll file. You would be familiar with all the
user interface elements but the new thing for you might be Clipboard.

Clipboard

In Windows, data is shareable among applications. For example you are typing in
Notepad and after you have typed, you want to copy all the text written in Notepad to
another Editor, say, MS Word. How could this be possible? The answer is: through
clipboard. Yes, in clipboard, firstly we copy all the data to clipboard and then paste that
data to MS Word because clipboard is shareable object. All the text or image data you
have previously copied can now be pasted in other application.

Following are some of the features of clipboard.

• User32.dll manages clipboard.
• Clipboard is used to cut copy and paste operations.
• Clipboard is temporary storage area. When you shut down windows, data saved in

clipboard will be lost.

8.3 Handles in Windows
A term handle is a 32 bit number in Win32 environment. It is normally a type defined as
void *. Handle has an extensive use in Windows. Using handles you can destroy, release
and take other actions on the object. The basic types of handles in windows are:

• HANDLE
• HWND
• HINSTANCE

HWND is of type Handle to Window.
HINSTANCE is of type Handle to instance of the application.

Windows Basics

8

Every application has unique identifier in Memory that is called an instance of the
application.

8.4 Our first Win32 Program
For writing win32 program you should be familiar of programming concepts in C++.

First we will include header file windows.h in our source file because this header
contains prototype of useful APIs that will be used in our windows programs. This header
also contains some other headers required for commonly used APIs.

#include <windows.h>

Every Windows GUI base program starts its execution from the WinMain API. And
Every Windows console base program starts its execution from simple main function.
Here we will be discussing about Windows Graphical User Interface programs.
So we will start our program by writing WinMain.

int CALLBACK WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR
lpCmdLine,int nCmdShow)
{

MessageBox(NULL, “This is the First Windows Program \n Author: Shahid”,
“Virtual Uinversity”, MB_OK|MB_ICONINFORAMTION);

return 0;
}

WinMain:
WinMain is the starting point in Every Win32 GUI programs. WinMain has four
parameters these are,

1. First is instance of the current application.
2. Second parameter is also an instance of this application which is used for the

previous application of the same type that is already running. It is used only in
Window 16bit editions or Windows 3.1. Windows 32bit editions do not support
this parameter. It is here just for compatibility.

3. Third parameter is a command line argument of string type which is a type
defined as char *.

4. Fourth parameter is windows style.

Calling Convention:
CALLBACK is a calling convention which is a type defined as __stdcall.
Return Value:
In our application WinMain returns 0. WinMain always returns a value of type integer.

Windows Basics

9

MessageBox:
MessageBox API is used to display a message on screen. It comes in windows dialog
form and has caption and client area, both of these contains strings. It also has buttons,
like Ok, Cancel, Yes, No, Retry, Abort. It has four arguments.

1. First is the HANDLE to window, this handle is a parent handle of the
messagebox. In our case it has no parent handle so we write NULL here that
shows that it has parent desktop.

2. Second parameter is a string type which print string in the body of the message
box which is also called client area of the message box

3. Third parameter is also a string type it prints string in a caption of the message
box.

4. Fourth parameter is a buttons that will be displayed in the message box. We
presented here some of the constants like MB_OK|MB_ICONINFORMATION
which display ok button and icon information on the left side of the message
box. These constants can be presented here by using bitwise OR operator.

8.5 Summary
In this Lecture, we studied about the windows history about when and how different
editions were released. Then we learnt about the windows components: Kernel, GDI and
User. Kernel is the heart of Operating system and GDI is a Graphics device interface in
windows which is used to display and print graphics and text objects. Then we studied
user component which is responsible to control all the dialogs, menu, windows and
Windows controls, etc. ‘Handles in windows’ is the introductory part of handles used in
windows. Handles are 32 bit number that may be void * type which is defined in
‘WinUser.h’ header file. Finally we wrote our first Win32 program. We always write
WinMain in every windows program because WinMain is the starting point of Windows
Programs. And we learnt how to display message box in WinMain function and then we
returned from WinMain with the returned value Zero. And we discussed about the
Message box API and explained its parameters as well.

Tips: Never use second parameter (HINSTANCE) of WinMain because it is not used in
recent version of windows. In future lectures, we will discuss how to determine the
existence of previous application.

Windows Basics

10

Copyright

Some of the course material and Documentation on Microsoft Windows APIs has been
taken from Microsoft for the preparation of Win32 course. This course has been designed
and prepared by Virtual University.

Microsoft, Visual C++, Windows, Windows NT, Win32, and Win32s are either
registered trademarks or trademarks of Microsoft Corporation.

Chapter 9

9.1 MULTIPLE INSTANCES 2
9.2 WINDOW CLASS 2
9.3 ELEMENTS OF A WINDOW CLASS 3
9.3.1 CLASS NAME 5
9.3.2 WINDOW PROCEDURE ADDRESS 5
9.3.3 INSTANCE HANDLE 5
9.3.4 CLASS CURSOR 5
9.3.5 CLASS ICONS 6
9.3.6 CLASS BACKGROUND BRUSH 6
9.3.7 CLASS MENU 7
9.3.8 CLASS STYLES 7
9.4 USING WINDOW CLASS (EXAMPLE) 9
9.5 ABOUT WINDOWS 11
9.5.1 CLIENT AREA 11
9.5.2 NONCLIENT AREA 11
9.6 PROTOTYPE OF CREATEWINDOW 12
9.6.1 CLASS NAME (LPCLASSNAME) 13
9.6.2 WINDOW NAME (LPWINDOWNAME). 13
9.6.3 WINDOW STYLES (DWSTYLE) 13
BITWISE INCLUSIVE-OR OPERATOR ‘|’ 16
9.6.4 HORIZONTAL POSITION OF THE WINDOW (X) 16
9.6.5 VERTICAL POSITION OF THE WINDOW (Y) 16
9.6.6 WIDTH OF THE WINDOW (NWIDTH) 16
9.6.7 HEIGHT OF THE WINDOW (NHEIGHT) 17
9.6.8 PARENT OF THE WINDOW (HWNDPARENT) 17
9.6.9 MENU OF THE WINDOW (HMENU) 17
9.6.10 INSTANCE HANDLE (HINSTANCE) 17
9.6.11 LONG PARAM (LPPARAM) 17
9.6.12 RETURN VALUE 17
9.7 USING WINDOWS (EXAMPLE) 18
9.8 MESSAGES IN WINDOWS 18
9.8.1 MESSAGE QUEUING 19
9.8.2 MESSAGE ROUTING 19
9.9 WINDOW PROCEDURE 19
9.9.1 HANDLE TO WINDOW(HWND) 19
9.9.2 MESSAGE TYPE(UMSG) 19
9.9.3 MESSAGE’S WPARAM(WPARAM) 20
9.9.4 MESSAGE’S LPARAM(LPARAM) 20
9.9.5 RETURN VALUE 20
9.10 GETTING MESSAGE FROM MESSAGE QUEUE 20
9.11 MESSAGE DISPATCHING 21
SUMMARY 21
EXERCISES 22

 Windows Creation and Message Handling 2

9.1 Multiple Instances
Every running application is an Application Instance. So if you open more than one
application, more than one instance will be running simultaneously. If you write a
program and run it, this running program will be known as a process running in memory.
Whenever you press ALT-CONTROL-DELETE, you can open Task Manager to watch
all the processes present in task list, running under Windows. Each process can have one
or more than one windows. Every process has at least one thread running, which is UI
thread.

9.2 Window Class
Every window in Windows has its own registered Window class. This window class has
set of attributes which are later used by windows. These attributes could be windows
background brush, windows style, cursors, Icons, etc. So Windows class tells the
Operating system about the characteristics and physical layout of its windows. Window
Class is simply a structure named WNDCLASS or WNDCLASSEX that only contains
set of attributes for window.

Each window class has an associated window procedure shared by all windows of the
same class. The window procedure processes messages for all windows of that class and
therefore, controls their behavior and appearance. For more information, see Window
Procedures.

A process must register a window class before it creates a window. Registering a window
class associates a window procedure, class styles and other class attributes particularly a
class name. When a process specifies a class name in the CreateWindow or
CreateWindowEx function, the system creates a window using a registered class name.

A window class defines the attributes of a window such as style, icon, cursor, menu, and
window procedure. The first step in registering a window class is to fill a WNDCLASS
structure. For more information, see Elements of a Window Class. Next step is to pass the
structure to the RegisterClass function.

To register an application global class, specify the CS_GLOBALCLASS style in the
style member of the WNDCLASSEX structure. When registering an application local
class, do not specify the CS_GLOBALCLASS style.

If you register the window class using the ANSI version of RegisterClassEx,
RegisterClassExA, the application requests that the system pass text parameters of
messages to the windows of the created class using the ANSI character set; if you register
the class using the Unicode version of RegisterClassEx, RegisterClassExW, the
application requests that the system pass text parameters of messages to the windows of
the created class using the Unicode character set. The IsWindowUnicode function enables

 Windows Creation and Message Handling 3

applications to query the nature of each window. For more information on ANSI and
Unicode functions, see Conventions for Function Prototypes in Microsoft help
documents.

The executable or DLL that registered the class is the owner of the class. The system
determines class ownership from the hInstance member of the WNDCLASSEX
structure passed to the RegisterClassEx function when the class is registered. For DLLs,
the hInstance member must be the handle to the .dll instance.

Windows 2000 or Above: The class is not destroyed when the .dll that owns it is
unloaded. Therefore, if the system calls the window procedure for a window of that class,
it will cause an access violation, because the .dll containing the window procedure is no
longer in memory. The process must destroy all windows using the class before the .dll is
unloaded and call the UnregisterClass function.

ATOM RegisterClass(
 CONST WNDCLASS *lpWndClass
) ;
The complete description its parameters can be found from
Microsoft Developer Network

BOOL UnregisterClass(
 LPCTSTR lpClassName,
 HINSTANCE hInstance
);

The complete description its parameters can be found from
Microsoft Developer Network

This function inputs a pointer to CONST WNDCLASS structure and returns ATOM.
ATOM is a unique identifier that will be returned from RegisterClass. ATOM is unsigned
short value.

9.3 Elements of a Window Class

The elements of a window class define the default behavior of windows belonging to the
class. The application that registers a window class assigns elements to the class by
setting appropriate members in a WNDCLASSEX structure and passing the structure to
the RegisterClassEx function. The GetClassInfoEx and GetClassLong functions retrieve
information about a given window class. The SetClassLong function changes elements of
a local or global class that the application has already registered.

 Windows Creation and Message Handling 4

The Structure of Window Class is as follows.
WNDCLASS Structure

typedef struct _WNDCLASS {
LPCTSTR lpszClassName;
WNDPROC lpfnWndProc;
UINT style;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR lpszMenuName;
LPCTSTR lpszClassName;
} WNDCLASS, *PWNDCLASS;

Although a complete window class consists of many elements, the system requires the
application which supplies a class name, the window-procedure address and an instance
handle. Use the other elements to define default attributes for windows of the class, such
as the shape of the cursor and the content of the menu for the window. You must
initialize any unused members of the WNDCLASSEX structure to zero or NULL. The
window class elements are as shown in the following table.

Element Purpose
Class Name Distinguishes the class from other registered classes.
Window
Procedure
Address

Pointer to the function that processes all messages sent to windows in
the class and defines the behavior of the window.

Instance Handle Identifies the application or .dll that registered the class.

Class Cursor Defines the mouse cursor that the system displays for a window of the
class.

Class Icons Defines the large icon and the small icon (Windows NT 4.0 and later).
Class
Background
Brush.

Defines the color and pattern that fill the client area when the window is
opened or painted.

Class Menu Specifies the default menu for windows that do not explicitly define a
menu.

Class Styles
Defines how to update the window after moving or resizing it, how to
process double-clicks of the mouse, how to allocate space for the device
context, and other aspects of the window.

Extra Class Specifies the amount of extra memory, in bytes, that the system should

 Windows Creation and Message Handling 5

Memory reserve for the class. All windows in the class share the extra memory
and can use it for any application-defined purpose. The system
initializes this memory to zero.

Extra Window
Memory

Specifies the amount of extra memory, in bytes, that the system should
reserve for each window belonging to the class. The extra memory can
be used for any application-defined purpose. The system initializes this
memory to zero.

9.3.1 Class Name

Every window class needs a Class Name to distinguish one class from another. Assign a
class name by setting the lpszClassName member of the WNDCLASSEX structure to
the address of a null-terminated string that specifies the name. Because window classes
are process specific, window class names need to be unique only within the same process.
Also, because class names occupy space in the system's private ATOM table, you should
keep class name strings as short a possible.

The GetClassName function retrieves the name of the class to which a given window
belongs.

9.3.2 Window Procedure Address

Every class needs a window-procedure address to define the entry point of the window
procedure used to process all messages for windows in the class. The system passes
messages to the procedure when it requires the window to carry out tasks, such as
painting its client area or responding to input from the user. A process assigns a window
procedure to a class by copying its address to the lpfnWndProc member of the
WNDCLASSEX structure. For more information, see Window Procedures.

9.3.3 Instance Handle

Every window class requires an instance handle to identify the application or .dll that
registers the class. The system requires instance handles to keep track of all modules. The
system assigns a handle to each copy of a running executable or .dll.

The system passes an instance handle to the entry-point function of each executable. The
executable or .dll assigns this instance handle to the class by copying it to the hInstance
member of the WNDCLASSEX structure.

9.3.4 Class Cursor

The class cursor defines the shape of the cursor when it is in the client area of a window
in the class. The system automatically sets the cursor to the given shape when the cursor
enters the window's client area and ensures it keeps that shape while it remains in the
client area. To assign a cursor shape to a window class, load a predefined cursor shape by
using the LoadCursor function and then assign the returned cursor handle to the hCursor

 Windows Creation and Message Handling 6

member of the WNDCLASSEX structure. Alternatively, provide a custom cursor
resource and use the LoadCursor function to load it from the application's resources.

The system does not require a class cursor. If an application sets the hCursor member of
the WNDCLASSEX structure to NULL, no class cursor is defined. The system assumes
the window sets the cursor shape each time the cursor moves into the window. A window
can set the cursor shape by calling the SetCursor function whenever the window receives
the WM_MOUSEMOVE message.

9.3.5 Class Icons

A class icon is a picture that the system uses to represent a window of a particular class.
An application can have two class icons — one large and one small. The system displays
a window's large class icon in the Task-switch window that appears when the user
presses ALT+TAB, and in the large icon views of the task bar and explorer. The small
class icon appears in a window's title bar and in the small icon views of the task bar and
explorer.

To assign a large and small icon to a window class, specify the handles of the icons in the
hIcon and hIconSm members of the WNDCLASSEX structure. The icon dimensions
must conform to required dimensions for large and small class icons. For a large class
icon, you can determine the required dimensions by specifying the SM_CXICON and
SM_CYICON values in a call to the GetSystemMetrics function. For a small class icon,
specify the SM_CXSMICON and SM_CYSMICON values.

If an application sets the hIcon and hIconSm members of the WNDCLASSEX structure
to NULL, the system uses the default application icon as the large and small class icons
for the window class. If you specify a large class icon but not a small one, the system
creates a small class icon based on the large one. However, if you specify a small class
icon but not a large one, the system uses the default application icon as the large class
icon and the specified icon as the small class icon.

You can override the large or small class icon for a particular window by using the
WM_SETICON message. You can retrieve the current large or small class icon by using
the WM_GETICON message.

9.3.6 Class Background Brush

A class background brush prepares the client area of a window for subsequent drawing
by the application. The system uses the brush to fill the client area with a solid color or
pattern, thereby removing all previous images from that location whether they belong to
the window or not. The system notifies a window that its background should be painted
by sending the WM_ERASEBKGND message to the window.

To assign a background brush to a class, create a brush by using the appropriate GDI
functions and assign the returned brush handle to the hbrBackground member of the
WNDCLASSEX structure.

 Windows Creation and Message Handling 7

Instead of creating a brush, an application can set the hbrBackground member to one of
the standard system color values. For a list of the standard system color values, see
System Colors from Microsoft Documentation.

To use a standard system color, the application must increase the background-color value
by one. For example, COLOR_BACKGROUND + 1 are the system background color.
Alternatively, you can use the GetSysColorBrush function to retrieve a handle to a brush
that corresponds to a standard system color, and then specify the handle in the
hbrBackground member of the WNDCLASSEX structure.

The system does not require that a window class has a class background brush. If this
parameter is set to NULL, the window must paint its own background whenever it
receives the WM_ERASEBKGND message.

9.3.7 Class Menu

A class menu defines the default menu to be used by the windows in the class if no
explicit menu is given when the windows are created. A menu is a list of commands from
which a user can choose actions for the application to carry out.

You can assign a menu to a class by setting the lpszMenuName member of the
WNDCLASSEX structure to the address of a null-terminated string that specifies the
resource name of the menu. The menu is assumed to be a resource in the given
application. The system automatically loads the menu when it is needed. If the menu
resource is identified by an integer and not by a name, the application can set the
lpszMenuName member to that integer by applying the MAKEINTRESOURCE macro
before assigning the value.

The system does not require a class menu. If an application sets the lpszMenuName
member of the WNDCLASSEX structure to NULL, window in the class has no menu
bar. Even if no class menu is given, an application can still define a menu bar for a
window when it creates the window.

If a menu is given for a class and a child window of that class is created, the menu is
ignored.

9.3.8 Class Styles

The class styles define additional elements of the window class. Two or more styles can
be combined by using the bitwise OR (|) operator. To assign a style to a window class,
assign the style to the style member of the WNDCLASSEX structure. The class styles
are as follows.

 Windows Creation and Message Handling 8

Style Action

CS_BYTEALIGNCLIENT
Aligns the window's client area on a byte boundary (in the
x direction). This style affects the width of the window and
its horizontal placement on the display.

CS_BYTEALIGNWINDOW
Aligns the window on a byte boundary (in the x direction).
This style affects the width of the window and its
horizontal placement on the display.

CS_CLASSDC

Allocates one device context to be shared by all windows
in the class. Because window classes are process specific, it
is possible for multiple threads of an application to create a
window of the same class. It is also possible for the threads
to attempt to use the device context simultaneously. When
this happens, the system allows only one thread to
successfully finish its drawing operation.

CS_DBLCLKS
Sends a double-click message to the window procedure
when the user double-clicks the mouse while the cursor is
within a window belonging to the class.

CS_DROPSHADOW

Windows XP: Enables the drop shadow effect on a
window. The effect is turned on and off through
SPI_SETDROPSHADOW. Typically, this is enabled for
small, short-lived windows such as menus to emphasize
their Z order relationship to other windows.

CS_GLOBALCLASS Specifies that the window class is an application global
class. For more information.

CS_HREDRAW Redraws the entire window if a movement or size
adjustment changes the width of the client area.

CS_NOCLOSE Disables Close on the window menu.

CS_OWNDC Allocates a unique device context for each window in the
class.

CS_PARENTDC

Sets the clipping rectangle of the child window to that of
the parent window so that the child can draw on the parent.
A window with the CS_PARENTDC style bit receives a
regular device context from the system's cache of device
contexts. It does not give the child the parent's device
context or device context settings. Specifying
CS_PARENTDC enhances an application's performance.

CS_SAVEBITS

Saves, as a bitmap, the portion of the screen image
obscured by a window of this class. When the window is
removed, the system uses the saved bitmap to restore the
screen image, including other windows that were obscured.
Therefore, the system does not send WM_PAINT
messages to windows that were obscured if the memory
used by the bitmap has not been discarded and if other
screen actions have not invalidated the stored image.

 Windows Creation and Message Handling 9

This style is useful for small windows (for example, menus
or dialog boxes) that are displayed briefly and then
removed before other screen activity takes place. This style
increases the time required to display the window, because
the system must first allocate memory to store the bitmap.

CS_VREDRAW Redraws the entire window if a movement or size
adjustment changes the height of the client area.

9.4 Using Window Class (Example)

#include <windows.h>

// Declaration of Global variable
HINSTANCE hinst;
// Function prototypes.
int WINAPI WinMain(HINSTANCE hInst, HINSTANCE
hInstPrev, LPSTR str, int cmd);
InitApplication(HINSTANCE);
InitInstance(HINSTANCE, int);
LRESULT CALLBACK MainWndProc(HWND, UINT, WPARAM,
LPARAM);

// Application entry point.
int WINAPI WinMain(HINSTANCE hInst, HINSTANCE
hInstPrev, LPSTR str, int cmd)
{
 MSG msg;

 if (!InitApplication(hinstance))
 return FALSE;
return 0;
 }

//Initialize Application by registering class

BOOL InitApplication(HINSTANCE hinstance)
{
 WNDCLASSEX wcx;

 // Fill in the window class structure with
//parameters
 // that describe the main window.

 Windows Creation and Message Handling 10

 wcx.cbSize = sizeof(wcx); // size of
structure
 wcx.style = CS_HREDRAW |
 CS_VREDRAW; // redraw if
size changes
 wcx.lpfnWndProc = MainWndProc; // points to
window procedure
 wcx.cbClsExtra = 0; // no extra
class memory
 wcx.cbWndExtra = 0; // no extra
window memory
 wcx.hInstance = hinstance; // handle to
instance
 wcx.hIcon = LoadIcon(NULL,
 IDI_APPLICATION); // predefined
app. icon
 wcx.hCursor = LoadCursor(NULL,
 IDC_ARROW); // predefined
arrow
 wcx.hbrBackground = GetStockObject(
 WHITE_BRUSH); // white
background brush
 wcx.lpszMenuName = "MainMenu"; // name of menu
resource
 wcx.lpszClassName = "MainWClass"; // name of
window class
 wcx.hIconSm = LoadImage(hinstance, // small class
icon
 MAKEINTRESOURCE(5),
 IMAGE_ICON,
 GetSystemMetrics(SM_CXSMICON),
 GetSystemMetrics(SM_CYSMICON),
 LR_DEFAULTCOLOR);

 // Register the window class.

 return RegisterClassEx(&wcx);
}

 Windows Creation and Message Handling 11

9.5 About Windows

Every graphical Microsoft® Windows®-based application creates at least one window,
called the main window that serves as the primary interface between the user and the
application. Most applications also create other windows, either directly or indirectly, to
perform tasks related to the main window. Each window plays a part in displaying output
and receiving input from the user.

When you start an application, the system also associates a taskbar button with the
application. The taskbar button contains the program icon and title. When the application
is active, its taskbar button is displayed in the pushed state.

An application window includes elements such as a title bar, a menu bar, the window
menu (formerly known as the system menu), the minimize button, the maximize button,
the restore button, the close button, a sizing border, a client area, a horizontal scroll bar,
and a vertical scroll bar. An application's main window typically includes all of these
components. The following illustration shows these components in a typical main
window.

9.5.1 Client Area

The client area is the part of a window where the application displays output, such as text
or graphics. For example, a desktop publishing application displays the current page of a
document in the client area. The application must provide a function, called a window
procedure, to process input to the window and display output in the client area.

9.5.2 Nonclient Area

The title bars, menu bar, window menu, minimizes and maximize buttons, sizing border,
and scroll bars are referred to collectively as the window's nonclient area. The system

 Windows Creation and Message Handling 12

manages most aspects of the nonclient area, and the application manages the appearance
and behavior of its client area.

The title bar displays an application-defined icon and line of text; typically, the text
specifies the name of the application or indicates the purpose of the window. An
application specifies the icon and text when creating the window. The title bar also makes
it possible for the user to move the window by using a mouse or other pointing device.

Most applications include a menu bar that lists the commands supported by the
application. Items in the menu bar represent the main categories of commands. Clicking
an item on the menu bar typically opens a pop-up menu whose items correspond to the
tasks within a given category. By clicking a command, the user directs the application to
carry out a task.

The window menu is created and managed by the system. It contains a standard set of
menu items that, when chosen by the users, sets a window’s size or position, closes the
application, or performs tasks.

The buttons in the upper-right corner affect the size and position of the window. When
you click the maximize button, the system enlarges the window to the size of the screen
and positions the window, so it covers the entire desktop, minus the taskbar. At the same
time, the system replaces the maximize button with the restore button. When you click
the restore button, the system restores the window to its previous size and position. When
you click the minimize button, the system reduces the window to the size of its taskbar
button, positions the window over the taskbar button, and displays the taskbar button in
its normal state. To restore the application to its previous size and position, click its
taskbar button. When you click the close button, application exits.

The sizing border is an area around the perimeter of the window that enables the user to
size the window by using a mouse or other pointing device.

The horizontal scroll bar and vertical scroll bar convert mouse or keyboard input into
values that an application uses to shift the contents of the client area either horizontally or
vertically. For example, a word-processing application that displays a lengthy document
typically provides a vertical scroll bar to enable the user to page up and down through the
document.

9.6 Prototype of CreateWindow

Here is a prototype of CreateWindow Function.

HWND CreateWindow(
 LPCTSTR lpClassName; //class name (identification)
 LPCTSTR lpWindowName; //Window caption bar Name
 DWORD dwStyle; // style of the windows
 Int x; //starting X point of window on screen

 Windows Creation and Message Handling 13

 Int y; //starting Y point of window on screen
 Int width; //Width of the window from starting point
 Int height; //height of the window from starting Y point
 HWND hWndParent; //handle the parent window if any
 HMENU hMenu; // handle the Menu if any
 HINSTANCE hInstance; //handle of the instance
 LPVOID lpParam; //void parameter
);
//Documentation is described below

9.6.1 Class Name (lpClassName)
[in] Pointer to a null-terminated string or a class atom created by a previous call to the
RegisterClass or RegisterClassEx function. The atom must be in the low-order word of
lpClassName; the high-order word must be zero.

If lpClassName is a string, it specifies the window class name. The class name can be any
name registered with RegisterClass or RegisterClassEx, provided that the module that
registers the class is also the module that creates the window. The class name can also be
any of the predefined system class names

9.6.2 Window Name (lpWindowName).
[in] Pointer to a null-terminated string that specifies the window name.

If the window style specifies a title bar, the window title pointed to by lpWindowName is
displayed in the title bar. When using CreateWindow to create controls, such as buttons,
check boxes, and static controls, use lpWindowName to specify the text of the control.
When creating a static control with the SS_ICON style, use lpWindowName to specify the
icon name or identifier. To specify an identifier, use the syntax "#num".

9.6.3 Window Styles (dwStyle)
[in] Specifies the style of the window being created. This parameter can be a combination
of Window Styles.

The following styles can be specified wherever a window style is required.

Style Meaning
WS_BORDER Creates a window that has a thin-line border.
WS_CAPTION Creates a window that has a title bar (includes the

WS_BORDER style).
WS_CHILD Creates a child window. A window with this style

 Windows Creation and Message Handling 14

cannot have a menu bar. This style cannot be used with
the WS_POPUP style.

WS_CHILDWINDOW Same as the WS_CHILD style.
WS_CLIPCHILDREN Excludes the area occupied by child windows when

drawing occurs within the parent window. This style is
used when creating the parent window.

WS_CLIPSIBLINGS Clips child windows relative to each other; that is, when
a particular child window receives a WM_PAINT
message, the WS_CLIPSIBLINGS style clips all other
overlapping child windows out of the region of the child
window to be updated. If WS_CLIPSIBLINGS is not
specified and child windows overlap, it is possible, when
drawing within the client area of a child window, to
draw within the client area of a neighboring child
window.

WS_DISABLED Creates a window that is initially disabled. A disabled
window cannot receive input from the user. To change
this after a window has been created, use
EnableWindow.

WS_DLGFRAME Creates a window that has a border of a style typically
used with dialog boxes. A window with this style cannot
have a title bar.

WS_GROUP Specifies the first control of a group of controls. The
group consists of this first control and all controls
defined after it, up to the next control with the
WS_GROUP style. The first control in each group
usually has the WS_TABSTOP style so that the user can
move from group to group. The user can subsequently
change the keyboard focus from one control in the group
to the next control in the group by using the direction
keys.

You can turn this style on and off to change dialog box
navigation. To change this style after a window has been
created, use SetWindowLong.

WS_HSCROLL Creates a window that has a horizontal scroll bar.
WS_ICONIC Creates a window that is initially minimized. Same as

the WS_MINIMIZE style.
WS_MAXIMIZE Creates a window that is initially maximized.
WS_MAXIMIZEBOX Creates a window that has a maximize button. Cannot be

combined with the WS_EX_CONTEXTHELP style.
The WS_SYSMENU style must also be specified.

WS_MINIMIZE Creates a window that is initially minimized. Same as
the WS_ICONIC style.

 Windows Creation and Message Handling 15

WS_MINIMIZEBOX Creates a window that has a minimize button. Cannot be
combined with the WS_EX_CONTEXTHELP style.
The WS_SYSMENU style must also be specified.

WS_OVERLAPPED Creates an overlapped window. An overlapped window
has a title bar and a border. Same as the WS_TILED
style.

WS_OVERLAPPEDWINDOW Creates an overlapped window with the
WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX
styles. Same as the WS_TILEDWINDOW style.

WS_POPUP Creates a pop-up window. This style cannot be used
with the WS_CHILD style.

WS_POPUPWINDOW Creates a pop-up window with WS_BORDER,
WS_POPUP, and WS_SYSMENU styles. The
WS_CAPTION and WS_POPUPWINDOW styles must
be combined to make the window menu visible.

WS_SIZEBOX Creates a window that has a sizing border. Same as the
WS_THICKFRAME style.

WS_SYSMENU Creates a window that has a window menu on its title
bar. The WS_CAPTION style must also be specified.

WS_TABSTOP Specifies a control that can receive the keyboard focus
when the user presses the TAB key. Pressing the TAB
key changes the keyboard focus to the next control with
the WS_TABSTOP style.

You can turn this style on and off to change dialog box
navigation. To change this style after a window has been
created, use SetWindowLong.

WS_THICKFRAME Creates a window that has a sizing border. Same as the
WS_SIZEBOX style.

WS_TILED Creates an overlapped window. An overlapped window
has a title bar and a border. Same as the
WS_OVERLAPPED style.

WS_TILEDWINDOW Creates an overlapped window with the
WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX
styles. Same as the WS_OVERLAPPEDWINDOW
style.

WS_VISIBLE Creates a window that is initially visible.

This style can be turned on and off by using
ShowWindow or SetWindowPos

 Windows Creation and Message Handling 16

WS_VSCROLL Creates a window that has a vertical scroll bar.

This is updated documents from Microsoft Help Desk.

Bitwise Inclusive-OR Operator ‘|’

The bitwise inclusive OR ‘|’ operator compares the values (in binary format) of each
operand and yields a value whose bit pattern shows which bits in either of the operands
has the value 1 (one). If both of the bits are 0 (zero), the result of the comparison is 0
(zero); otherwise, the result is 1 (one).

9.6.4 Horizontal Position of the Window (x)
This member specifies the initial horizontal position of the window. For an overlapped or
pop-up window, the x parameter is the initial x-coordinate of the window's upper-left
corner, in screen coordinates. For a child window, x is the x-coordinate of the upper-left
corner of the window relative to the upper-left corner of the parent window's client area.

If this parameter is set to CW_USEDEFAULT, the system selects the default position for
the window's upper-left corner and ignores the y parameter. CW_USEDEFAULT is valid
only for overlapped windows; if it is specified for a pop-up or child window, the x and y
parameters are set to zero.

9.6.5 Vertical Position of the Window (y)

This member specifies the initial vertical position of the window. For an overlapped or
pop-up window, the y parameter is the initial y-coordinate of the window's upper-left
corner, in screen coordinates. For a child window, y is the initial y-coordinate of the
upper-left corner of the child window relative to the upper-left corner of the parent
window's client area. For a list box, y is the initial y-coordinate of the upper-left corner of
the list box's client area relative to the upper-left corner of the parent window's client
area.

If an overlapped window is created with the WS_VISIBLE style bit set and the x
parameter is set to CW_USEDEFAULT, the system ignores the y parameter.

9.6.6 Width of the Window (nWidth)
This specifies the width, in device units, of the window. For overlapped windows, nWidth
is either the window's width, in screen coordinates, or CW_USEDEFAULT. If nWidth is
CW_USEDEFAULT, the system selects a default width and height for the window; the
default width extends from the initial x-coordinate to the right edge of the screen, and the
default height extends from the initial y-coordinate to the top of the icon area.

 Windows Creation and Message Handling 17

CW_USEDEFAULT is valid only for overlapped windows; if CW_USEDEFAULT is
specified for a pop-up or child window, nWidth and nHeight are set to zero.

9.6.7 Height of the Window (nHeight)
This member specifies the height, in device units, of the window. For overlapped
windows, nHeight is the window's height, in screen coordinates.

If nWidth is set to CW_USEDEFAULT, the system ignores nHeight.

9.6.8 Parent of the Window (hWndParent)

This member is a HANDLE to the parent or owner window of the window being created.
To create a child window or an owned window, supply a valid window handle. This
parameter is optional for pop-up windows.

9.6.9 Menu of the Window (hMenu)
This member is a HANDLE to a menu, or specifies a child-window identifier depending
on the window style. For an overlapped or pop-up window, hMenu identifies the menu to
be used with the window; it can be NULL if the class menu is to be used. For a child
window, hMenu specifies the child-window identifier, an integer value used by a dialog
box control to notify its parent about events. The application determines the child-
window identifier; it must be unique for all child windows with the same parent window.

9.6.10 Instance Handle (hInstance)

This member is Application instance handle.

In Windows NT/2000 or later This value is ignored.

9.6.11 Long Param (lpParam)
This member is a pointer to a value to be passed to the window through the
CREATESTRUCT structure passed in the lParam parameter the WM_CREATE
message. If an application calls CreateWindow to create a multiple document interface
(MDI) client window, lpParam must point to a CLIENTCREATESTRUCT structure.

9.6.12 Return Value
If the CreateWindow function is successful, then it returns a valid handle of the newly
created window. Otherwise it returns NULL.

 Windows Creation and Message Handling 18

9.7 Using Windows (Example)

HINSTANCE hinst;
HWND hwndMain;

// Create the main window.

hwndMain = CreateWindowEx(
 0, // no extended styles
 "MainWClass", // class name
 "Main Window", // window name
 WS_OVERLAPPEDWINDOW | // overlapped window
 WS_HSCROLL | // horizontal scroll bar
 WS_VSCROLL, // vertical scroll bar
 CW_USEDEFAULT, // default horizontal
position
 CW_USEDEFAULT, // default vertical
position
 CW_USEDEFAULT, // default width
 CW_USEDEFAULT, // default height
 (HWND) NULL, // no parent or owner
window
 (HMENU) NULL, // class menu used
 hinstance, // instance handle
 NULL); // no window creation data

if (!hwndMain)
 return FALSE;

Now Show the window using the flag specified by the program that started the
application, and send the application WM_PAINT message.

ShowWindow(hwndMain, SW_SHOWDEFAULT);
UpdateWindow(hwndMain);

9.8 Messages in Windows
Unlike MS-DOS-based applications, Win32®-based applications are event-driven. They
do not make explicit function calls (such as C run-time library calls) to obtain input.
Instead, they wait for the system to pass input to them. The system passes all input for an
application to the various windows in the application. Each window has a function, called
a window procedure that the system calls whenever it has input for the window. The
window procedure processes the input and returns control to the system.

 Windows Creation and Message Handling 19

Note: We are presenting here a brief description of messages. Detailed discussion about
messages, message routing, message types, message filtering etc will be given in next
lectures.

9.8.1 Message Queuing
• Operating system keeps the generated messages in a queue.
• Every application has its own message queue.
• Messages generated in a system first reside in System Message Queue, then dispatch

to application message queue and to the windows procedure.
• Windows programming is basically message driven programming.

9.8.2 Message Routing
The system uses two methods to route messages to a window procedure: posting
messages to a first-in, first-out queue called a message queue, a system-defined memory
object that temporarily stores messages, and sending messages directly to a window
procedure.

Messages posted to a message queue are called queued messages. They are primarily the
result of user input entered through the mouse or keyboard.

9.9 Window Procedure
Every window has its procedure that is called windows procedure. All messages that are
sent be DispatchMessage API or SendMessage API will be received by windows
procedure. So windows procedure is the particular address in memory that receives
messages. Windows operating system gets this address through registered window class
member lpfnWndProc. You have to provide address or name of window procedure in
windows class.
Windows procedure receives four parameters,

LRESULT (CALLBACK *WNDPROC) (HWND hWnd,UINT message,WPARAM
wParam,LPARAM lParam);

9.9.1 Handle to Window(hWnd)
This member is a HANDLE to the window to which message was sent.

9.9.2 Message Type(uMsg)
This member specifies the message type; the message could be a Mouse message,
character message, keyboard message, etc. Message is unsigned 32bit number.

 Windows Creation and Message Handling 20

9.9.3 Message’s WPARAM(wParam)
This specifies additional message information. The contents of this parameter depend on
the value of the uMsg parameter e.g. key down message keeps the key pressed value in
this parameter.

9.9.4 Message’s LPARAM(lParam)
This specifies additional message information. The contents of this parameter depend on
the value of the uMsg parameter e.g. mouse down messages keep information of mouse
pointer’s x and y position in this parameter.

9.9.5 Return Value
The return value is the result of the message processing and depends on the message sent
function.

9.10 Getting message from Message Queue
We can get message from message Queue by using GetMessage or PeekMessage APIs.
The GetMessage function retrieves a message from the calling thread's message queue
and also removes the message from the queue. And then function dispatches incoming
sent messages until a posted message is available for retrieval.

GetMessage inputs four parameters,
BOOL GetMessage()
(

LPMSG lpMsg,
HWND hWnd,
UINT wMsgFilterMin,
UINT wMsgFilterMax

)
lpMsg

[out] Pointer to an MSG structure that receives message information from the
thread's message queue.

hWnd

[in] Handle to the window whose messages are to be retrieved. The window must
belong to the calling thread. The following value has a special meaning.

wMsgFilterMin

[in] Specifies the integer value of the lowest message value to be retrieved. Use
WM_KEYFIRST to specify the first keyboard message or WM_MOUSEFIRST
to specify the first mouse message.

 Windows Creation and Message Handling 21

wMsgFilterMax
[in] Specifies the integer value of the highest message value to be retrieved. Use
WM_KEYLAST to specify the first keyboard message or WM_MOUSELAST to
specify the last mouse message.

return Value
If the function retrieves a message other than WM_QUIT, the return value is

nonzero. If the function retrieves the WM_QUIT message, the return value is zero.

If there is an error, the return value is -1. For example, the function fails if hWnd is an
invalid window handle or lpMsg is an invalid pointer. To get extended error information,
use GetLastError function.

9.11 Message Dispatching
After getting message from message queue, message is dispatched to the actual window
procedure. For dispatching messages to window procedure, we use DispatchMessage
API.

DispatchMessage inputs one argument that is pointer to MSG structure.

BOOL DispatchMessage
(

MSG *lpMsg
)

Summary

In this lecture, we learnt how to Register Window class using RegisterClass API and how
to set attributes of window class structure. After registration of Window class we learnt to
use CreateWindow API. CreateWindow API uses window class name, caption name,
style of window, starting points, width and height of windows and windows parent
handle or handle to owner mainly. We have window handle in variable of type handle to
window. Using window handle we can send different types of messages to the window.
Then we learnt how to get messages from application message queue. And after getting
messages from application message queue, we dispatch messages to the windows
message handling procedure. Windows message procedure inputs four parameters. These
parameters are also the members of MSG structure. These parameters are important for
every one who is developing applications for Windows.

 Windows Creation and Message Handling 22

Exercises
Write down a code which would create and destroy window successfully. Further more
show message box when the user closes window.

Chapter 10

CHAPTER 10 1

CREATING WINDOW APPLICATION 2
STEP 1 (REGISTERING A WINDOW CLASS) 2
STEP 2 (CREATING WINDOW) 3
10.2 ABOUT MESSAGES 4
WINDOWS MESSAGES 5
MESSAGE TYPES 5
SYSTEM-DEFINED MESSAGES 5
APPLICATION-DEFINED MESSAGES 7
MESSAGE ROUTING 7
QUEUED MESSAGES 8
NONQUEUED MESSAGES 9
MESSAGE HANDLING 10
MESSAGE LOOP 10
WINDOW PROCEDURE 11
MESSAGE FILTERING 12
POSTING AND SENDING MESSAGES 12
POSTING MESSAGES 12
SENDING MESSAGES 13
MESSAGE DEADLOCKS 13
BROADCASTING MESSAGES 14
STEP 3 (FETCHING MESSAGES AND MESSAGE PROCEDURE) 15
STEP 4 (WINMAIN FUNCTION) 16
Summary 17

Architecture of standard Win32 Application 2

10.1Creating Window Application
Now we are able to create a mature windows application. We are already familiar with
windows creation, registration, message receiving and Message dispatching processes.
Here we will make our knowledge more real through practical work. Let’s make a full
fledge window.

We will make a full fledge window application in four steps:

1. In first step, we will register a windows class.
2. In second step, we will create a window
3. In third step, we will make a message loop and message handling procedure
4. In our fourth step, we will write WinMain function and will make the application

running.

Step 1 (Registering a Window Class)
We write our own function RegisterAppWindow which will register the window and
return true or false in case of success or failure.

bool RegisterAppWindow(HINSTANCE hInstance)
{

/* Before registering class, we will have to fill the WNDCLASS structure.
*/

WNDCLASS wc;
wc.style = 0;
wc.lpfnWndProc=MyWindowProc;
wc.cbClsExtra = 0;
wc.cbWndExtra =0;
wc.hInstance = hInstance;
wc.hIcon = NULL;
wc.hCursor = LoadCursor(NULL, LoadCursor(IDC_ARROW));
wc.hbrBackground= (HBRUSH)GetStockObject(GRAY_BRUSH);
wc.lpszMenuName=NULL;
wc.lpszClassName=“MyFirstWindowClass”;

/*
We have discussed almost all the parameters of WNDCLASS structure in our previous
lecture.
After filling the WNDCLASS structure, we will pass this as a reference to RegisterClass
function. Because RegisterClass function take pointer to the structure WNDLCASS as a
parameter.
*/

ATOM cAtom=RegisterClass(&wc);

Architecture of standard Win32 Application 3

if(!cAtom)
{
 MessageBox(NULL,”Error Register Window Class”,” Virtual Uinversity”,0);

return 0;
}

return true;
}//End of Function RegisterAppWindow

Step 2 (Creating Window)
For Creation of window, we will use Win32 API CreateWindow. We have studied
CreateWindow function in our previous lecture. Here we will use this function for
creating window.
For creating window and checking return values, we will define our own function
InitApplication which will internally call CreateAppWindow and returns true or false. It
will return true in case of success and false in case failure.

bool InitApplication(HINSTANCE hInstance)
{
HWND hWnd=NULL;

/*
Call RegisterAppWindow Function and returns false if this function returns false because
we need not to proceed forward unless our windows is not registered properly.
*/

if(!RegisterAppWindow(hInstance))
{
 return false;
}

/*
We already know that CreateWindow function returns handle to window, we will save
this return handle in our hWnd variable.
*/
hWnd = CreateWindow(“MyFirstWindowClass”,”Virtual Uinversity”,
WS_OVERLAPPEDWINDOW|WS_VISIBLE,
 100,

50,
CW_USEDDEFAULT,
CW_USEDDEFAULT,
NULL,
NULL,
hInstance, //Optional or not used in Window 2000 or above
NULL);

/*

Architecture of standard Win32 Application 4

After receiving the return handling of the window, we are interested to know that what
information are in return handle. hWnd can have either handle to window or Null value.
Null value shows that CreateWindow function has not been successful and no window
could be created or window has successfully created otherwise.
*/
if (hWnd == NULL)
{
 MessageBox(NULL, “Cannot Create Window”,”Virtual Uinversity”,0);
 return false;
}

/*
After Successful creation of window, we have initially hidden window. For showing
window on the screen, we will use following API: ShowWindow
*/

ShowWindow(hWnd,SW_SHOWNORMAL);

/*
ShowWindow take second parameter which indicates windows show or hidden states.
*/
return true;
} //End of InitApplication

10.2 About Messages

Unlike MS-DOS-based applications, Windows-based applications are event-driven. They
do not make explicit function calls (such as C run-time library calls) to obtain input.
Instead, they wait for the system to pass input to them.

The system passes all input for an application to the various windows in the application.
Each window has a function, called a window procedure that the system calls whenever it
has input for the window. The window procedure processes the input and returns control
to the system. For more information about window procedures, see Window Procedures.

Microsoft® Windows® XP: If a top-level window stops responding to messages for
more than several seconds, the system considers the window to be hung. In this case, the
system hides the window and replaces it with a ghost window that has the same Z order,
location, size, and visual attributes. This allows the user to move it, resize it, or even
close the application. However, these are the only actions available because the
application is actually hung. When in the debugger mode, the system does not generate a
ghost window

Architecture of standard Win32 Application 5

10.2.1 Windows Messages

The system passes input to a window procedure in the form of messages. Messages are
generated by both the system and applications. The system generates a message at each
input event — for example, when the user types, moves the mouse, or clicks a control
such as a scroll bar. The system also generates messages in response to changes in the
system brought about by an application, such as when an application changes the pool of
system font resources or resizes one of its windows. An application can generate
messages to direct its own windows to perform tasks or to communicate with windows in
other applications.

The system sends a message to a window procedure with a set of four parameters:

• Window handle
• Message identifier
• Two values called message parameters.

 The window handle identifies the window for which the message is intended. The system
uses it to determine which window procedure should receive the message.

A message identifier is a named constant that identifies the purpose of a message. When
a window procedure receives a message, it uses a message identifier to determine how to
process the message. For example, the message identifier WM_PAINT tells the window
procedure that the window's client area has changed and must be repainted.

Message parameters specify data or the location of data used by a window procedure
when processing a message. The meaning and value of the message parameters depend
on the message. A message parameter can contain an integer, packed bit flags, a pointer
to a structure containing additional data, and so on. When a message does not use
message parameters, they are typically set to NULL. A window procedure must check the
message identifier to determine how to interpret the message parameters.

Message Types

This section describes the two types of messages:

• System-Defined Messages
• Application-Defined Messages

System-Defined Messages

The system sends or posts a system-defined message when it communicates with an
application. It uses these messages to control the operations of applications and to
provide input and other information for applications to process. An application can also
send or post system-defined messages. Applications generally use these messages to
control the operation of control windows created by using pre-registered window classes.

Architecture of standard Win32 Application 6

Each system-defined message has a unique message identifier and a corresponding
symbolic constant (defined in the software development kit (SDK) header files) that
states the purpose of the message. For example, the WM_PAINT constant requests that a
window paint its contents.

Symbolic constants specify the category to which system-defined messages belong. The
prefix of the constant identifies the type of window that can interpret and process the
message. Following are the prefixes and their related message categories.

Prefix Message category
ABM Application desktop toolbar
BM Button control
CB Combo box control
CBEM Extended combo box control
CDM Common dialog box
DBT Device
DL Drag list box
DM Default push button control
DTM Date and time picker control
EM Edit control
HDM Header control
HKM Hot key control
IPM IP address control
LB List box control
LVM List view control
MCM Month calendar control
PBM Progress bar
PGM Pager control
PSM Property sheet
RB Rebar control
SB Status bar window
SBM Scroll bar control
STM Static control
TB Toolbar
TBM Trackbar
TCM Tab control
TTM Tooltip control
TVM Tree-view control
UDM Up-down control
WM General window

Architecture of standard Win32 Application 7

General window messages cover a wide range of information and requests, including
messages for mouse and keyboard input, menu and dialog box input, window creation
and management.

Application-Defined Messages

An application can create messages to be used by its own windows or to communicate
with windows in other processes. If an application creates its own messages, the window
procedure that receives them must interpret the messages and provide appropriate
processing.

Message-identifier values are used as follows:

• The system reserves message-identifier values in the range 0x0000 through
0x03FF (the value of WM_USER – 1) for system-defined messages. Applications
cannot use these values for private messages.

• Values in the range 0x0400 (the value of WM_USER) through 0x7FFF are
available for message identifiers for private window classes.

• If your application is marked version 4.0, you can use message-identifier values in
the range 0x8000 (WM_APP) through 0xBFFF for private messages.

• The system returns a message identifier in the range 0xC000 through 0xFFFF
when an application calls the RegisterWindowMessage function to register a
message. The message identifier returned by this function is guaranteed to be
unique throughout the system. Use of this function prevents conflicts that can
arise if other applications use the same message identifier for different purposes.

10.2.2 Message Routing

The system uses two methods to route messages to a window procedure: posting
messages to a first-in, first-out queue called a Message queue, a system-defined memory
object that temporarily stores messages, and sending messages directly to a window
procedure.

Messages posted to a message queue are called queued messages. They are primarily the
result of user input entered through the mouse or keyboard, such as
WM_MOUSEMOVE, WM_LBUTTONDOWN, WM_KEYDOWN, and WM_CHAR
messages. Other queued messages include the timer, paint, and quit messages:
WM_TIMER, WM_PAINT, and WM_QUIT. Most other messages, which are sent
directly to a window procedure, are called nonqueued messages.

• Queued Messages
• Nonqueued Messages

Architecture of standard Win32 Application 8

Queued Messages

The system can display any number of windows at a time. To route mouse and keyboard
input to the appropriate window, the system uses message queues.

The system maintains a single system message queue and one thread-specific message
queue for each graphical user interface (GUI) thread. To avoid the overhead of creating a
message queue for non–GUI threads, all threads are created initially without a message
queue. The system creates a thread-specific message queue only when the thread makes
its first call to one of the User or Windows Graphics Device Interface (GDI) functions.

Whenever the user moves the mouse, clicks the mouse buttons, or types on the keyboard,
the device driver for the mouse or keyboard converts the input into messages and places
them in the system message queue. The system removes the messages, one at a time,
from the system message queue, examines them to determine the destination window,
and then posts them to the message queue of the thread that created the destination
window. A thread's message queue receives all mouse and keyboard messages for the
windows created by the thread. The thread removes messages from its queue and directs
the system to send them to the appropriate window procedure for processing.

With the exception of the WM_PAINT message, the system always posts messages at
the end of a message queue. This ensures that a window receives its input messages in the
proper first in, first out (FIFO) sequence. The WM_PAINT message, however, is kept in
the queue and is forwarded to the window procedure only when the queue contains no
other messages. Multiple WM_PAINT messages for the same window are combined into
a single WM_PAINT message, consolidating all invalid parts of the client area into a
single area. Combining WM_PAINT messages reduces the number of times a window
must redraw the contents of its client area.

The system posts a message to a thread's message queue by filling an MSG structure and
then copying it to the message queue.

Information in MSG includes:

typedef struct tagMSG {

 HWND hWnd;
 UINT message;
 WPARAM wParam,
 LPARAM lParam,
 DWORD time,
 POINT pt

}MSG;

Architecture of standard Win32 Application 9

hWnd: The handle of the window for which the message is intended (hWnd)
message: The message identifier (message)
wParam: The two message parameters (wParam and lParam)
lParam: The time the message was posted (time)
time: The mouse cursor position (pt)

A thread can post a message to its own message queue or to the queue of another thread
by using the PostMessage or PostThreadMessage function.

An application can remove a message from its queue by using the GetMessage
function.To examine a message without removing it from its queue, an application can
use the PeekMessage function. This function fills MSG with information about the
message.

After removing a message from its queue, an application can use the DispatchMessage
function to direct the system to send the message to a window procedure for processing.
DispatchMessage takes a pointer to MSG that was filled by a previous call to the
GetMessage or PeekMessage function. DispatchMessage passes the window handle,
the message identifier, and the two message parameters to the window procedure, but it
does not pass the time the message was posted or mouse cursor position. An application
can retrieve this information by calling the GetMessageTime and GetMessagePos
functions while processing a message.

A thread can use the WaitMessage function to yield control to other threads when it has
no messages in its message queue. The function suspends the thread and does not return
until a new message is placed in the thread's message queue.

You can call the SetMessageExtraInfo function to associate a value with the current
thread's message queue. Then call the GetMessageExtraInfo function to get the value
associated with the last message retrieved by the GetMessage or PeekMessage function.

Nonqueued Messages

Nonqueued messages are sent immediately to the destination window procedure,
bypassing the system message queue and thread message queue. The system typically
sends nonqueued messages to notify a window of events that affect it. For example, when
the user activates a new application window, the system sends the window a series of
messages, including WM_ACTIVATE, WM_SETFOCUS, and WM_SETCURSOR.
These messages notify the window that it has been activated, that keyboard input is being
directed to the window, and that the mouse cursor has been moved within the borders of
the window. Nonqueued messages can also result when an application calls certain
system functions. For example, the system sends the WM_WINDOWPOSCHANGED
message after an application uses the SetWindowPos function to move a window.

Architecture of standard Win32 Application 10

Some functions that send nonqueued messages are BroadcastSystemMessage,
BroadcastSystemMessageEx, SendMessage, SendMessageTimeout, and
SendNotifyMessage.

10.2.3 Message Handling

An application must remove and process messages posted to the message queues of its
threads. A single-threaded application usually uses a message loop in its WinMain
function to remove and send messages to the appropriate window procedures for
processing. Applications with multiple threads can include a message loop in each thread
that creates a window. The following sections describe how a message loop works and
explain the role of a window procedure:

• Message Loop
• Window Procedure

Message Loop

A simple message loop consists of one function call to each of these three functions:
GetMessage, TranslateMessage, and DispatchMessage. Note that if there is an error,
GetMessage returns -1 -- thus the need for the special testing.

The GetMessage function retrieves a message from the queue and copies it to a structure
of type MSG. It returns a nonzero value, unless it encounters the WM_QUIT message,
in which case it returns FALSE and ends the loop. In a single-threaded application,
ending the message loop is often the first step in closing the application. An application
can end its own loop by using the PostQuitMessage function, typically in response to the
WM_DESTROY message in the window procedure of the application's main window.

If you specify a window handle as the second parameter of GetMessage, only messages
for the specified window are retrieved from the queue. GetMessage can also filter
messages in the queue, retrieving only those messages that fall within a specified range.

A thread's message loop must include TranslateMessage if the thread is to receive
character input from the keyboard. The system generates virtual-key messages
(WM_KEYDOWN and WM_KEYUP) each time the user presses a key. A virtual-key
message contains a virtual-key code that identifies which key was pressed, but not its
character value. To retrieve this value, the message loop must contain
TranslateMessage, which translates the virtual-key message into a character message
(WM_CHAR) and places it back into the application message queue. The character
message can then be removed upon a subsequent iteration of the message loop and
dispatched to a window procedure.

The DispatchMessage function sends a message to the window procedure associated
with the window handle specified in the MSG structure. If the window handle is
HWND_TOPMOST, DispatchMessage sends the message to the window procedures of

Architecture of standard Win32 Application 11

all top-level windows in the system. If the window handle is NULL, DispatchMessage
does nothing with the message.

An application's main thread starts its message loop after initializing the application and
creating at least one window. Once started, the message loop continues to retrieve
messages from the thread's message queue and to dispatch them to the appropriate
windows. The message loop ends when the GetMessage function removes the
WM_QUIT message from the message queue.

Only one message loop is needed for a message queue, even if an application contains
many windows. DispatchMessage always dispatches the message to the proper window;
this is because each message in the queue is an MSG structure that contains the handle of
the window to which the message belongs.

You can modify a message loop in a variety of ways. For example, you can retrieve
messages from the queue without dispatching them to a window. This is useful for
applications that post messages not specifying a window. You can also direct
GetMessage to search for specific messages, leaving other messages in the queue. This is
useful if you must temporarily bypass the usual FIFO order of the message queue.

An application that uses accelerator keys must be able to translate keyboard messages
into command messages. To do this, the application's message loop must include a call to
the TranslateAccelerator function. For more information about accelerator keys, see
Keyboard Accelerators.

If a thread uses a modeless dialog box, the message loop must include the
IsDialogMessage function so that the dialog box can receive keyboard input.

Window Procedure

A window procedure is a function that receives and processes all messages sent to the
window. Every window class has a window procedure, and every window created with
that class uses that same window procedure to respond to messages.

The system sends a message to a window procedure by passing the message data as
arguments to the procedure. The window procedure then performs an appropriate action
for the message; it checks the message identifier and, while processing the message, uses
the information specified by the message parameters.

A window procedure does not usually ignore a message. If it does not process a message,
it must send the message back to the system for default processing. The window
procedure does this by calling the DefWindowProc function, which performs a default
action and returns a message result. The window procedure must then return this value as
its own message result. Most window procedures process just a few messages and pass
the others on to the system by calling DefWindowProc.

Architecture of standard Win32 Application 12

Because a window procedure is shared by all windows belonging to the same class, it can
process messages for several different windows. To identify the specific window affected
by the message, a window procedure can examine the window handle passed with a
message.

10.2.4 Message Filtering

An application can choose specific messages to retrieve from the message queue (while
ignoring other messages) by using the GetMessage or PeekMessage function to specify
a message filter. The filter is a range of message identifiers (specified by a first and last
identifier), a window handle, or both. GetMessage and PeekMessage use a message
filter to select which messages to retrieve from the queue. Message filtering is useful if an
application must search the message queue for messages that have arrived later in the
queue. It is also useful if an application must process input (hardware) messages before
processing posted messages.

The WM_KEYFIRST and WM_KEYLAST constants can be used as filter values to
retrieve all keyboard messages; the WM_MOUSEFIRST and WM_MOUSELAST
constants can be used to retrieve all mouse messages.

Any application that filters messages must ensure that a message satisfying the message
filter can be posted. For example, if an application filters for a WM_CHAR message in a
window that does not receive keyboard input, the GetMessage function does not return.
This effectively "hangs" the application.

10.2.5 Posting and Sending Messages

Any application can post and send messages. Like the system, an application posts a
message by copying it to a message queue and sends a message by passing the message
data as arguments to a window procedure. To post messages, an application uses the
PostMessage function. An application can send a message by calling the SendMessage,
BroadcastSystemMessage, SendMessageCallback, SendMessageTimeout,
SendNotifyMessage, or SendDlgItemMessage function.

Posting Messages

An application typically posts a message to notify a specific window to perform a task.
PostMessage creates an MSG structure for the message and copies the message to the
message queue. The application's message loop eventually retrieves the message and
dispatches it to the appropriate window procedure.

An application can post a message without specifying a window. If the application
supplies a NULL window handle when calling PostMessage, the message is posted to the
queue associated with the current thread. Because no window handle is specified, the
application must process the message in the message loop. This is one way to create a
message that applies to the entire application, instead of to a specific window.

Architecture of standard Win32 Application 13

Occasionally, you may want to post a message to all top-level windows in the system. An
application can post a message to all top-level windows by calling PostMessage and
specifying HWND_TOPMOST in the hwnd parameter.

A common programming error is to assume that the PostMessage function always posts
a message. This is not true when the message queue is full. An application should check
the return value of the PostMessage function to determine whether the message has been
posted and, if it has not been, repost it.

Sending Messages

An application typically sends a message to notify a window procedure to perform a task
immediately. The SendMessage function sends the message to the window procedure
corresponding to the given window. The function waits until the window procedure
completes processing and then returns the message result. Parent and child windows
often communicate by sending messages to each other. For example, a parent window
that has an edit control as its child window can set the text of the control by sending a
message to it. The control can notify the parent window of changes to the text that are
carried out by the user by sending messages back to the parent.

The SendMessageCallback function also sends a message to the window procedure
corresponding to the given window. However, this function returns immediately. After
the window procedure processes the message, the system calls the specified callback
function.

Occasionally, you may want to send a message to all top-level windows in the system.
For example, if the application changes the system time, it must notify all top-level
windows about the change by sending a WM_TIMECHANGE message. An application
can send a message to all top-level windows by calling SendMessage and specifying
HWND_TOPMOST in the hwnd parameter. You can also broadcast a message to all
applications by calling the BroadcastSystemMessage function and specifying
BSM_APPLICATIONS in the lpdwRecipients parameter.

By using the InSendMessage or InSendMessageEx function, a window procedure can
determine whether it is processing a message sent by another thread. This capability is
useful when message processing depends on the origin of the message.

10.2.6 Message Deadlocks

A thread that calls the SendMessage function to send a message to another thread cannot
continue executing until the window procedure that receives the message returns. If the
receiving thread yields control while processing the message, the sending thread cannot
continue executing, because it is waiting for SendMessage to return. If the receiving
thread is attached to the same queue as the sender, it can cause an application deadlock to
occur. (Note that journal hooks attach threads to the same queue.)

Architecture of standard Win32 Application 14

Note that the receiving thread needs not yield control explicitly; calling any of the
following functions can cause a thread to yield control implicitly.

• DialogBox
• DialogBoxIndirect
• DialogBoxIndirectParam
• DialogBoxParam
• GetMessage
• MessageBox
• PeekMessage
• SendMessage

To avoid potential deadlocks in your application, consider using the SendNotifyMessage
or SendMessageTimeout functions. Otherwise, a window procedure can determine
whether a message it has received was sent by another thread by calling the
InSendMessage or InSendMessageEx function. Before calling any of the functions in
the preceding list while processing a message, the window procedure should first call
InSendMessage or InSendMessageEx. If this function returns TRUE, the window
procedure must call the ReplyMessage function before any function that causes the thread
to yield control.

10.2.7 Broadcasting Messages

Each message consists of a message identifier and two parameters, wParam and lParam.
The message identifier is a unique value that specifies the message purpose. The
parameters provide additional information that is message-specific, but the wParam
parameter is generally a type value that provides more information about the message.

A message broadcast is simply the sending of a message to multiple recipients in the
system. To broadcast a message from an application, use the BroadcastSystemMessage
function, specifying the recipients of the message. Rather than specify individual
recipients, you must specify one or more types of recipients. These types are applications,
installable drivers, network drivers, and system-level device drivers. The system sends
broadcast messages to all members of each specified type.

The system typically broadcasts messages in response to changes that take place within
system-level device drivers or related components. The driver or related component
broadcasts the message to applications and other components to notify them of the
change. For example, the component responsible for disk drives broadcasts a message
whenever the device driver for the floppy disk drive detects a change of media such as
when the user inserts a disk in the drive.

The system broadcasts messages to recipients in this order: system-level device drivers,
network drivers, installable drivers, and applications. This means that system-level device
drivers, if chosen as recipients, always get the first opportunity to respond to a message.
Within a given recipient type, no driver is guaranteed to receive a given message before

Architecture of standard Win32 Application 15

any other driver. This means that a message intended for a specific driver must have a
globally-unique message identifier so that no other driver unintentionally processes it.

You can also broadcast messages to all top-level windows by specifying
HWND_BROADCAST in the SendMessage, SendMessageCallback,
SendMessageTimeout, or SendNotifyMessage function.

Applications receive messages through the window procedure of their top-level windows.
Messages are not sent to child windows. Services can receive messages through a
window procedure or their service control handlers.

Note System-level device drivers use a related, system-level function to broadcast
system messages.

Step 3 (Fetching messages and Message Procedure)
For Retrieving message from message queue we are going to write function which will
have a message loop and TranslateMessage and DispatchMessage API’s will be enclosed
in the message loop.
We will call this function RunApplication.

int RunApplication()
{
MSG msg;

/*Main Application Message Loop*/

while(GetMessage (&msg, NULL, 0, 0) > 0)
{

/* translate virtual-key messages into character messages */

TranslateMessage (&msg);

/* dispatch message to windows procedure*/

DispatchMessage (&msg);

}//End of Message Loop (while)

return (int)msg.wParam;
}//End of RunApplication

This type of message loop, we will be using in our windows applications. Now we will
create Window Message Procedure. This message procedure will have the same name as
given in WNDLCASS structure.

Architecture of standard Win32 Application 16

LRESULT CALLBACK MyWindowProc (HWND hWnd,UINT message,WPARAM
wParam,LPARAM lParam)
{
 switch(message)

{
 case WM_LBUTTONDOWN:
 {

 MessageBox(hWnd, “Left Mouse Button Pressed”,”Virtual
University”,0);
 return 0;
 }
 case WM_DESTROY:
 {
/*
We have recieve WM_DESTROY message, this message removes window from screen
and release resource, it allocated. Now at this time, we should post WM_QUIT message
in a message queue so that message loop terminates. For posting WM_QUIT message we
use PostQuitMessage API.
*/
 PostQuitMessage(0);
 return 0;
 }

}

/*
DefWindowProc(hWnd, message, wParam, lParam). This function calls the default
window procedure to provide default processing for any window messages that an
application does not process. This function ensures that every message is processed.
DefWindowProc () is called with the same parameters received by the window
procedure.
*/

DefWindowProc(hWnd,message,wParam,lParam);
} // End of MyWindowProc

Step 4 (WinMain Function)
In this step we will write Windows starting point WinMain function.

int CALLBACK WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR
lpCmdLine,int nCmdShow)
{

/*

Architecture of standard Win32 Application 17

Call InitApplication Function and returns false if this function returns false because we
need not to proceed forward unless our windows is not registered and created properly.
*/

 if(!InitApplication(hInstance))

{
 MessageBox(NULL,”Application could not be initialized properly”,”Virtual

University”,MB_ICONHAND|MB_OK);
 return 0;
 }

/*
 Finally run the application until user press the close button and choose close from system
menu.
*/

return RunApplication();
}

Summary
 In this lecture, we have created a full fledge window application which has all the
characteristics of standard windows application. For creating window, we registered
window class with the attributes required. After successful registration we created
window. For creating window we used CreateWindow API. In CreateWindow API we
mentioned some of the Window styles. Window styles are used to create different styles
of windows. In this lecture we have created overlapped window with additional style like
WS_VISIBLE or we can use ShowWindow function with WS_SHOWNORMAL style.
We have also discussed many of the other windows style and their behaviors in our
previous lecture. And after successful creation of window we made message handling
procedure. Our message handling procedure checks left mouse button and in response of
this it shows message box which is written some text, and other message are let them
passed to default message procedure. We also studied Massages routing, message
dispatching, message filtering, messages deadlock, message sending and message
posting. For message receiving and dispatching, we created message loop which get the
messages from message Queue and dispatch these messages to message procedure.
Finally we coded a running application which displays windows and on pressing a left
mouse button it shows a message box.

Chapter 11

CHAPTER 11 1

11.1 HIERARCHY OF WINDOWS 2
11.2 THREADS 2
11.2.1 USER-INTERFACE THREAD 3
11.2.2 WORKER THREAD 3
11.3 WINDOWS 3
11.3.1 DESKTOP WINDOW 3
11.3.2 APPLICATION WINDOWS 4
11.3.2.1 Client Area 5
11.3.2.2 Nonclient Area 5
11.3.3 WINDOW ATTRIBUTES 6
11.3.3.1 Class Name 6
11.3.3.2 Window Name 6
11.3.3.3 Window Style 7
11.3.3.4 Extended Window Style 7
11.3.3.5 Position 7
11.3.3.6 Size 8
11.3.3.7 Parent or Owner Window Handle 8
11.3.3.8 Menu Handle or Child-Window Identifier 9
11.3.3.9 Application Instance Handle 9
11.3.3.10 Creation Data 9
11.3.3.11 Window Handle 9
11.3.4 MULTITHREAD APPLICATIONS 10
11.4 CONTROLS AND DIALOG BOXES 10
11.4.1 EDIT CONTROL 10
11.4.2 STATIC CONTROLS 11
11.4.3 SCROLL BAR 11
11.5 COMMON CONTROLS 11
11.6 OTHER USER INTERFACE ELEMENTS 12
11.7 WINDOWS MESSAGES(BRIEF DESCRIPTION) 12
11.7.1 WM_SYSCOMMAND: 12

SUMMARY 14

EXERCISE 14

User Interfaces 2

11.1 Hierarchy of Windows

The basic building block for displaying information in the Microsoft® Windows™
graphical environment is the window. Microsoft Windows manages how each window
relates to all other windows in terms of visibility, ownership, and parent/child
relationship. Windows uses this relationship information when creating, painting,
destroying, sizing or displaying a window. A window can have many children’s and may
or may not have one parent. An example of windows is Notepad, calculator, word pad
etc, are all windows.

A window shares the screen with other windows, including those from other applications.
Only one window at a time can receive input from the user. The user can use the mouse,
keyboard, or other input device to interact with this window and the application that owns
it.

11.2 Threads

A thread is basically a path of execution through a program. It is also the smallest unit of
execution that Win32 schedules. A thread consists of a stack, the state of the CPU
registers, and an entry in the execution list of the system scheduler. Each thread shares all
of the process’s resources.

A process consists of one or more threads and the code, data, and other resources of a
program in memory. Typical program resources are open files, semaphores, and
dynamically allocated memory. A program executes when the system scheduler gives one
of its threads execution control. The scheduler determines which threads should run and
when they should run. Threads of lower priority may have to wait while higher priority
threads complete their tasks. On multiprocessor machines, the scheduler can move
individual threads to different processors to “balance” the CPU load.

Each thread in a process operates independently. Unless you make them visible to each
other, the threads execute individually and are unaware of the other threads in a process.
Threads sharing common resources, however, must coordinate their work by using
semaphores or another method of inter process communication.

So a thread is a process that is part of a larger process or application. A thread can
execute any part of an application's code, including code that is currently being executed
by another thread. All threads share the

 Virtual Address space
 Global variables
 Operating system resources of their respective processes.

User Interfaces 3

Threads are two types of threads.

1. User-Interface Thread
2. Worker Thread

11.2.1 User-Interface Thread
In Windows, a thread that handles user input and responds to user events independently is
User-Interface Thread. User-interface thread own one or more windows and have its own
message queue. User-interface threads process messages, received from the system.

11.2.2 Worker Thread
A worker thread is commonly used to handle background tasks. Tasks such as calculation
and background printing are good examples of worker threads.

11.3 Windows
In a graphical Microsoft® Windows®-based application, a window is a rectangular area
of the screen where the application displays output and receives input from the user.
Therefore, one of the first tasks of a graphical Windows-based application is to create a
window.

A window shares the screen with other windows, including those from other applications.
Only one window at a time can receive input from the user. The user can use the mouse,
keyboard, or other input device to interact with this window and the application that owns
it.

A Window may further contain more windows inside it. For example lets take a
calculator, A calculator contains more windows in forms of buttons, radio buttons and
check boxes.

• Every Window has its parent and zero or more siblings.
• Top level window has desktop as its parent.

11.3.1 Desktop Window

When you start the system, it automatically creates the desktop window. The desktop
window is a system-defined window that paints the background of the screen and serves
as the base for all windows displayed by all applications.

The desktop window uses a bitmap to paint the background of the screen. The pattern
created by the bitmap is called the desktop wallpaper. By default, the desktop window
uses the bitmap from a .bmp file specified in the registry as the desktop wallpaper.

The GetDesktopWindow function returns a handle to the desktop window.

User Interfaces 4

A system configuration application, such as a Control Panel item, changes the desktop
wallpaper by using the SystemParametersInfo function with the wAction parameter set to
SPI_SETDESKWALLPAPER and the lpvParam parameter specifying a bitmap file
name. SystemParametersInfo then loads the bitmap from the specified file, uses the
bitmap to paint the background of the screen, and enters the new file name in the registry.

11.3.2 Application Windows

Every graphical Microsoft® Windows®-based application creates at least one window,
called the main window that serves as the primary interface between the user and the
application. Most applications also create other windows, either directly or indirectly, to
perform tasks related to the main window. Each window plays a part in displaying output
and receiving input from the user.

When you start an application, the system also associates a taskbar button with the
application. The taskbar button contains the program icon and title. When the application
is active, its taskbar button is displayed in the pushed state.

An application window includes elements such as a title bar, a menu bar, the window
menu (formerly known as the system menu), the minimize button, the maximize button,
the restore button, the close button, a sizing border, a client area, a horizontal scroll bar,
and a vertical scroll bar. An application's main window typically includes all of these
components. The following illustration shows these components in a typical main
window.

Figure 1 Windows Parts

User Interfaces 5

11.3.2.1 Client Area

The client area is the part of a window where the application displays output, such as text
or graphics. For example, a desktop publishing application displays the current page of a
document in the client area. The application must provide a function, called a window
procedure, to process input to the window and display output in the client area. For more
information, see Window Procedures.

11.3.2.2 Nonclient Area

The title bar, menu bar, window menu, minimize and maximize buttons, sizing border,
and scroll bars are referred to collectively as the window's nonclient area. The system
manages most aspects of the nonclient area; the application manages the appearance and
behavior of its client area.

The title bar displays an application-defined icon and line of text; typically, the text
specifies the name of the application or indicates the purpose of the window. An
application specifies the icon and text when creating the window. The title bar also makes
it possible for the user to move the window by using a mouse or other pointing device.

Most applications include a menu bar that lists the commands supported by the
application. Items in the menu bar represent the main categories of commands. Clicking
an item on the menu bar typically opens a pop-up menu whose items correspond to the
tasks within a given category. By clicking a command, the user directs the application to
carry out a task.

The window menu is created and managed by the system. It contains a standard set of
menu items that, when chosen by the user, set a window’s size or position, closes the
application, or performs tasks.

The buttons in the upper-right corner affect the size and position of the window. When
you click the maximize button, the system enlarges the window to the size of the screen
and positions the window, so it covers the entire desktop, minus the taskbar. At the same
time, the system replaces the maximize button with the restore button. When you click
the restore button, the system restores the window to its previous size and position. When
you click the minimize button, the system reduces the window to the size of its taskbar
button, positions the window over the taskbar button, and displays the taskbar button in
its normal state. To restore the application to its previous size and position, click its
taskbar button. By clicking the close button, application exits.

The sizing border is an area around the perimeter of the window that enables the user to
size the window by using a mouse or other pointing device.

The horizontal scroll bar and vertical scroll bar convert mouse or keyboard input into
values that an application uses to shift the contents of the client area either horizontally or
vertically. For example, a word-processing application that displays a lengthy document

User Interfaces 6

typically provides a vertical scroll bar to enable the user to page up and down through the
document.

11.3.3 Window Attributes

An application must provide the following information when creating a window. (With
the exception of the Window Handle, which the creation function returns to uniquely
identify the new window.)

• Class Name
• Window Name
• Window Style
• Extended Window Style
• Position
• Size
• Parent or Owner Window Handle
• Menu Handle or Child-Window Identifier
• Application Instance Handle
• Creation Data
• Window Handle

These window attributes are described in the following sections.

11.3.3.1 Class Name

Every window belongs to a window class. An application must register a window class
before creating any windows of that class. The window class defines most aspects of a
window's appearance and behavior. The chief component of a window class is the
window procedure, a function that receives and processes all input and requests sent to
the window. The system provides the input and requests in the form of messages. For
more information, see Window Classes, Window Procedures, and Messages and
Message Queues.

11.3.3.2 Window Name

A window name is a text string that identifies a window for the user. A main window,
dialog box, or message box typically displays its window name in its title bar, if present.
A control may display its window name, depending on the control's class. For example,
buttons, edit controls, and static controls displays their window names within the
rectangle occupied by the control. However, list boxes, combo boxes, and static controls
do not display their window names.

To change the window name after creating a window, use the SetWindowText function.
This function uses the GetWindowTextLength and GetWindowText functions to retrieve
the current window-name string from the window.

User Interfaces 7

11.3.3.3 Window Style

Every window has one or more window styles. A window style is a named constant that
defines an aspect of the window's appearance and behavior that is not specified by the
window's class. An application usually sets window styles when creating windows. It can
also set the styles after creating a window by using the SetWindowLong function.

The system and, to some extent, the window procedure for the class, interpret the window
styles.

Some window styles apply to all windows, but most apply to windows of specific
window classes. The general window styles are represented by constants that begin with
the WS_ prefix; they can be combined with the OR operator to form different types of
windows, including main windows, dialog boxes, and child windows. The class-specific
window styles define the appearance and behavior of windows belonging to the
predefined control classes. For example, the SCROLLBAR class specifies a scroll bar
control, but the SBS_HORZ and SBS_VERT styles determine whether a horizontal or
vertical scroll bar control is created.

For lists of styles that can be used by windows, see the following topics:

• Window Styles
• Button Styles
• Combo Box Styles
• Edit Control Styles
• List Box Styles
• Rich Edit Control Styles
• Scroll Bar Control Styles
• Static Control Styles

11.3.3.4 Extended Window Style

Every window can optionally have one or more extended window styles. An extended
window style is a named constant that defines an aspect of the window's appearance and
behavior that is not specified by the window class or the other window styles. An
application usually sets extended window styles when creating windows. It can also set
the styles after creating a window by using the SetWindowLong function.

For more information, see CreateWindowEx.

11.3.3.5 Position

A window's position is defined as the coordinates of its upper left corner. These
coordinates, sometimes called window coordinates, are always relative to the upper left
corner of the screen or, for a child window, the upper left corner of the parent window's
client area. For example, a top-level window having the coordinates (10,10) is placed 10

User Interfaces 8

pixels to the right of the upper left corner of the screen and 10 pixels down from it. A
child window having the coordinates (10,10) is placed 10 pixels to the right of the upper
left corner of its parent window's client area and 10 pixels down from it.

The WindowFromPoint function retrieves a handle to the window occupying a particular
point on the screen. Similarly, the ChildWindowFromPoint and
ChildWindowFromPointEx functions retrieve a handle to the child window occupying a
particular point in the parent window's client area. Although
ChildWindowFromPointEx can ignore invisible, disabled, and transparent child
windows, ChildWindowFromPoint cannot.

11.3.3.6 Size

A window's size (width and height) is given in pixels. A window can have zero width or
height. If an application sets a window's width and height to zero, the system sets the size
to the default minimum window size. To discover the default minimum window size, an
application uses the GetSystemMetrics function with the SM_CXMIN and SM_CYMIN
flags.

An application may need to create a window with a client area of a particular size. The
AdjustWindowRect and AdjustWindowRectEx functions calculate the required size of a
window based on the desired size of the client area. The application can pass the resulting
size values to the CreateWindowEx function.

An application can size a window so that it is extremely large; however, it should not size
a window so that it is larger than the screen. Before setting a window's size, the
application should check the width and height of the screen by using GetSystemMetrics
with the SM_CXSCREEN and SM_CYSCREEN flags.

11.3.3.7 Parent or Owner Window Handle

A window can have a parent window. A window that has a parent is called a child
window. The parent window provides the coordinate system used for positioning a child
window. Having a parent window affects aspects of a window's appearance; for example,
a child window is clipped so that no part of the child window can appear outside the
borders of its parent window. A window that has no parent, or whose parent is the
desktop window, is called a top-level window. An application uses the EnumWindows
function to obtain a handle to each of its top-level windows. EnumWindows passes the
handle to each top-level window, in turn, to an application-defined callback function,
EnumWindowsProc.

A window can own, or be owned by, another window. An owned window always appears
in front of its owner window, is hidden when its owner window is minimized, and is
destroyed when its owner window is destroyed. For more information, see Owned
Windows.

User Interfaces 9

11.3.3.8 Menu Handle or Child-Window Identifier

A child window can have a child-window identifier, a unique, application-defined value
associated with the child window. Child-window identifiers are especially useful in
applications that create multiple child windows. When creating a child window, an
application specifies the identifier of the child window. After creating the window, the
application can change the window's identifier by using the SetWindowLong function,
or it can retrieve the identifier by using the GetWindowLong function.

Every window, except a child window, can have a menu. An application can include a
menu by providing a menu handle either when registering the window's class or when
creating the window.

11.3.3.9 Application Instance Handle

Every application has an instance handle associated with it. The system provides the
instance handle to an application when the application starts. Because it can run multiple
copies of the same application, the system uses instance handles internally to distinguish
one instance of an application from another. The application must specify the instance
handle in many different windows, including those that create windows.

11.3.3.10 Creation Data

Every window can have application-defined creation data associated with it. When the
window is first created, the system passes a pointer to the data on to the window
procedure of the window being created. The window procedure uses the data to initialize
application-defined variables.

11.3.3.11 Window Handle

After creating a window, the creation function returns a window handle that uniquely
identifies the window. A window handle has the HWND data type; an application must
use this type when declaring a variable that holds a window handle. An application uses
this handle in other functions to direct their actions to the window.

An application can use the FindWindow function to discover whether a window with the
specified class name or window name exists in the system. If such a window exists,
FindWindow returns a handle to the window. To limit the search to the child windows of
a particular application, use the FindWindowEx function.

The IsWindow function determines whether a window handle identifies a valid, existing
window. There are special constants that can replace a window handle in certain
functions. For example, an application can use HWND_BROADCAST in the
SendMessage and SendMessageTimeout functions, or HWND_DESKTOP in the
MapWindowPoints function.

User Interfaces 10

11.3.4 Multithread Applications

A Windows-based application can have multiple threads of execution, and each thread
can create windows. The thread that creates a window must contain the code for its
window procedure.

An application can use the EnumThreadWindows function to enumerate the windows
created by a particular thread. This function passes the handle to each thread window, in
turn, to an application-defined callback function, EnumThreadWndProc.

The GetWindowThreadProcessId function returns the identifier of the thread that created
a particular window.

To set the show state of a window created by another thread, use the ShowWindowAsync
function.

11.4 Controls and Dialog Boxes

An application can create several types of windows in addition to its main window,
including controls and dialog boxes.

A control is a window that an application uses to obtain a specific piece of information
from the user, such as the name of a file to open or the desired point size of a text
selection. Applications also use controls to obtain information needed to control a
particular feature of an application. For example, a word-processing application typically
provides a control to let the user turn word wrapping on and off. For more information,
see Windows Controls.

Controls are always used in conjunction with another window—typically, a dialog box. A
dialog box is a window that contains one or more controls. An application uses a dialog
box to prompt the user for input needed to complete a command. For example, an
application that includes a command to open a file would display a dialog box that
includes controls in which the user specifies a path and file name. Dialog boxes do not
typically use the same set of window components as does a main window. Most have a
title bar, a window menu, a border (non-sizing), and a client area, but they typically do
not have a menu bar, minimize and maximize buttons, or scroll bars. For more
information, see Dialog Boxes.

A message box is a special dialog box that displays a note, caution, or warning to the
user. For example, a message box can inform the user of a problem the application has
encountered while performing a task. For more information, see Message Boxes.

11.4.1 Edit Control
An edit control is selected and receives the input focus when a user clicks the mouse

User Interfaces 11

inside it or presses the TAB key. After it is selected, the edit control displays its text (if
any) and a flashing caret that indicates the insertion point. The user can then enter text,
move the insertion point, or select text to be edited by using the keyboard or the mouse.
An edit control can send notification messages to its parent window in the form of
WM_COMMAND messages.

11.4.2 Static controls
• A static control is a control that enables an application to provide the user with

informational text and graphics that typically require no response.

• Applications often use static controls to label other controls or to separate a group
of controls. Although static controls are child windows, they cannot be selected.
Therefore, they cannot receive the keyboard focus.

Example of static control is a text in message box.

11.4.3 Scroll Bar
A window in a Win32®-based application can display a data object, such as a document
or a bitmap that is larger than the window's client area. When provided with a scroll bar,
the user can scroll a data object in the client area to bring into view the portions of the
object that extend beyond the borders of the window.
Scroll bar is of two types. Horizontal Scroll bars and Vertical Scroll bar.

11.5 Common Controls
The common controls are a set of windows that are implemented by the common control
library, which is a dynamic-link library (DLL) included with the Microsoft® Windows®
operating system. Like other control windows, a common control is a child window that
an application uses in conjunction with another window to perform I/O tasks.

Common controls are of these types.

• Date Time Picker Control.

• List View Control.

User Interfaces 12

11.6 Other user Interface Elements
The following are the user interface elements used in Windows.
• Cursors (Mouse shape)
• Icons (Windows Desktop Icons)
• Bitmaps (Images with RGB color values.)
• Accelerators (CTRL + S) Short Key combinations.

11.7 Windows Messages (brief description)
The following are the some of the windows messages

• WM_CLOSE
• WM_COMMAND
• WM_CREATE
• WM_DESTROY
• WM_ENABLE
• WM_LBUTTONDOWN
• WM_PAINT
• WM_RBUTTONDOWN
• WM_SYSCOMMAND
• WM_QUIT
• WM_SETTEXT

11.7.1 WM_SYSCOMMAND

A window receives this message when the user chooses a command from the window
menu (formerly known as the system or control menu) or when the user chooses the
maximize button, minimize button, restore button, or close button.

wParam:

This parameter specifies the type of system command requested. This parameter
can be one of the following values.

SC_MAXIMIZE
SC_MINIMIZE
SC_CLOSE
SC_RESTORE
SC_MAXIMIZE

lParam

This parameter is the low-order word specifies the horizontal position of the
cursor, in screen coordinates, if a window menu command is chosen with the mouse.
Otherwise, this parameter is not used. The high-order word specifies the vertical position
of the cursor, in screen coordinates, if a window menu command is chosen with the

User Interfaces 13

mouse. This parameter is -1 if the command is chosen using a system accelerator, or zero
if using a mnemonic.

The Window Procedure (Switch Only)

case WM_SYSCOMMAND:
{

wParam &= 0xFFF0; // lower 4-bits used by system

switch(wParam)
{

case SC_MAXIMIZE:
wParam = SC_MINIMIZE;//we handle this message and change it to
//SC_MINIMIZE

return DefWindowProc(hWnd, message, wParam, lParam);

case SC_MINIMIZE:
wParam = SC_MAXIMIZE; //we handle this message and change it to
//SC_MAXIMIZE

return DefWindowProc(hWnd, message, wParam, lParam);

case SC_CLOSE:
if(MessageBox(hWnd, "Are you sure to quit?",
 "Please Confirm", MB_YESNO) == IDYES)
DestroyWindow(hWnd);
break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);
break;

}

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

Swap Minimize/Maximize
 Application swap buttons Maximize and Minimize with each other, as it is
described in windows procedure.

User Interfaces 14

Summary
 In this lecture, we learnt more about windows, its hierarchy and types. We learnt
about windows types, these are owned windows and child windows. We must keep this
point in mind that owned windows and child windows have different concepts. Owned
windows have the handle of their owner windows, these handle make a chain of owned
windows. We read about the behavior of owned windows and owner windows. We knew
that if we bring some change to owner window then the owned windows will response on
some changes like minimize and destroying operations. We also knew about child
windows that these are the part of its parent’s client area. After we knew about threads
and their types, threads are two types one is User interface thread and second is working
thread. UI (User interface) thread is attached with user interfaces like windows, messages
and dialog boxes. We gained a little knowledge about controls. And after that we learnt
how to make a windows procedure with responses system menu including close,
maximize and minimize button.

Exercise
1. Write down a code which able to

i. Create window on screen with default coordinates
ii. Show Edit control on top left corner in the client area.

iii. Display button besides the edit control, which contains text ‘Show text on
client area’

iv. After pressing button, text must display on the client area.
v. And when the user closes the application, it must show message box which

will be containing ‘Thanks for using my application’

Chapter 12

12.1 SYSTEM CLASSES 2
12.2 STYLES OF SYSTEM CLASSES 3
12.3 CREATING BUTTON WINDOW CLASS (EXAMPLE) 5
12.4 GET AND SET WINDOW LONG 6
12.5 SUB-CLASSING 7
THE BASICS 7
TYPES OF SUBCLASSING 8
WIN32 SUBCLASSING RULES 8
INSTANCE SUBCLASSING 9
12.6 GET OR SET CLASSLONG 10
DIFFERENCE BETWEEN SETWINDOWLONG AND SETCLASSLONG 12
12.7 SUB-CLASSING (ELABORATION) 12
12.8 SUPPER-CLASSING 13
SUPER-CLASSING (EXAMPLE) 13
NEW WINDOW PROCEDURE 14
SUMMARY 15

Window Classes 2

12.1 System classes

Up till now, we have been registering window classes before creating a window. A number
of window classes are pre-registered / pre-coded in Windows, and their window procedures
are also pre-written.
A system class is a window class registered by the system. Many system classes are
available for all processes to use, while others are used only internally by the system.
Because the system registers these classes, a process cannot destroy them.
Microsoft Windows NT/Windows 2000/Windows XP: The system registers the system
classes for a process, the first time one of its threads calls a User or a Windows Graphics
Device Interface (GDI) function.

There are two types of System Window Classes.

1. Those which can be used by the user processes.
2. Those which can only be used by the system

The following table describes the system classes that are available for use by all processes.

Class Description

Button The class for a button.
ComboBox The class for a combo box.
Edit The class for an edit control.
ListBox The class for a list box.
MDIClient The class for an MDI client window.
ScrollBar The class for a scroll bar.
Static The class for a static control.

The following table describes the system classes that are available only for use by the
system.

Class Description

ComboLBox The class for the list box contained in a combo box.
DDEMLEvent Windows NT/Windows 2000/Windows XP: The class for Dynamic Data

Exchange Management Library (DDEML) events.
Message Windows 2000/Windows XP: The class for a message-only window.
#32768 The class for a menu.
#32769 The class for the desktop window.

Window Classes 3

#32770 The class for a dialog box.
#32771 The class for the task switch window.
#32772 Windows NT/Windows 2000/Windows XP: The class for icon titles.

Because these classes are pre-registered, that’s why we do not call RegisterClass or do not
need to register the window class before creating such a window.

12.2 Styles of System Classes

The Following are the styles of some of the system window classes

Button Styles

BS_3STATE
This style creates a button that is the same as a check box, except that the check box can be
grayed, as well as, checked or cleared. Use the grayed state to show that the state of the
check box is not determined.

BS_AUTO3STATE
This style creates a button that is the same as a three-state check box, except that the box
changes its state when the user selects it. The state cycles through checked, grayed, and
cleared.

BS_AUTOCHECKBOX
This style creates a button that is the same as a check box, except that the check state
automatically toggles between checked and cleared, each time the user selects the check
box.

BS_AUTORADIOBUTTON
This style creates a button that is the same as a radio button, except that when the user
selects it, the system automatically sets the button's check state to checked and
automatically sets the check state for all other buttons in the same group to cleared.

BS_CHECKBOX
This style creates a small, empty check box with text. By default, the text is displayed to
the right of the check box. To display the text to the left of the check box, combine this flag
with the BS_LEFTTEXT style (or with the equivalent BS_RIGHTBUTTON style).

BS_DEFPUSHBUTTON
This style creates a push button that behaves like a BS_PUSHBUTTON style, but it has
also a heavy black border. If the button is in a dialog box, the user can select the button by
pressing the ENTER key, even when the button does not have the input focus. This style is
useful for enabling the user to quickly select the most likely (default) option.

BS_GROUPBOX
This style creates a rectangle in which other controls can be grouped. Any text associated
with this style is displayed in the rectangle's upper left corner.

Window Classes 4

BS_LEFTTEXT
This style places text on the left side of the radio button or check box when combined with
a radio button or check box style. This style is same as the BS_RIGHTBUTTON style.

BS_OWNERDRAW
This style creates an owner-drawn button. The owner window receives a
WM_DRAWITEM message when a visual aspect of the button has changed. Do not
combine the BS_OWNERDRAW style with any other button styles.

BS_PUSHBUTTON
This style creates a push button that posts a WM_COMMAND message to the owner
window when the user selects the button.

BS_RADIOBUTTON
This style creates a small circle with text. By default, the text is displayed to the right of the
circle. To display the text to the left of the circle, combine this flag with the
BS_LEFTTEXT style (or with the equivalent BS_RIGHTBUTTON style). Use radio
buttons for groups of related, but mutually exclusive choices.

BS_USERBUTTON
This style has become obsolete, but provided for compatibility with 16-bit versions of
Windows. Applications should use BS_OWNERDRAW instead.

BS_BITMAP
This style specifies that the button displays a bitmap.

BS_BOTTOM
This style places text at the bottom of the button rectangle.

BS_CENTER
This style centers text horizontally in the button rectangle.

BS_ICON
This style specifies that the button displays an icon.

BS_FLAT
This style specifies that the button is two-dimensional; it does not use the default shading
to create a 3-D image.

BS_LEFT
This style Left-justifies the text in the button rectangle. However, if the button is a check
box or radio button that does not have the BS_RIGHTBUTTON style, the text is left
justified on the right side of the check box or radio button.

BS_MULTILINE
This style wraps the button text to multiple lines if the text string is too long to fit on a
single line in the button rectangle.

Window Classes 5

BS_NOTIFY
This style enables a button to send BN_KILLFOCUS and BN_SETFOCUS to help
notification messages to its parent window.

Note that buttons send the BN_CLICKED notification message regardless of whether it has
this style. To get BN_DBLCLK notification messages, the button must have the
BS_RADIOBUTTON or BS_OWNERDRAW style.

BS_PUSHLIKE
This style makes a button (such as a check box, three-state check box, or radio button) and
look and act like a push button. The button looks raised when it isn't pushed or checked,
and sunken when it is pushed or checked.

BS_RIGHT
This style right-justifies text in the button rectangle. However, if the button is a check box
or radio button that does not have the BS_RIGHTBUTTON style, the text is right justified
on the right side of the check box or radio button.

BS_RIGHTBUTTON
This style positions a radio button's circle or a check box's square on the right side of the
button rectangle. This is same as the BS_LEFTTEXT style.

BS_TEXT
This style specifies that the button displays text.

BS_TOP
This style places text at the top of the button rectangle.

BS_TYPEMASK
Microsoft Windows 2000: A composite style bit that results from using the OR operator on
BS_* style bits. It can be used to mask out valid BS_* bits from a given bitmask. Note that
this is out of date and does not correctly include all valid styles. Thus, you should not use
this style.

BS_VCENTER
This style places text in the middle (vertically) of the button rectangle.

12.3 Creating Button Window Class (Example)

For button, we will use our well known API CreateWindow to create a button.

hWnd = CreateWindow("BUTTON", "Virtual University", BS_RADIOBUTTON |
WS_VISIBLE | WS_OVERLAPPEDWINDOW | WS_CAPTION, 50, 50, 200, 100,
NULL, NULL, hInstance, NULL);

This button has no parent. If you want to place this button on any window, you should
provide hWndParent member with parent Window handle and add WS_CHILD style in its
dwStyle member.

Window Classes 6

12.4 Get and Set Window Long

The SetWindowLong function changes an attribute of the specified window. The function
also sets the 32-bit (long) value at the specified offset into the extra window memory.

LONG SetWindowLong(
 HWND hWnd, // handle to window

int nIndex, // offset of value to set
LONG dwNewLong // new value

);

hWnd

Handle to the window and, indirectly, the class to which the Window
belongs.

nIndex
This member specifies the zero-based offset to the value to be set. Valid
values are in the range zero through the number of bytes of extra window
memory, minus the size of an integer. To set any other value, specify one
of the following values.

GWL_EXSTYLE, Sets a new extended window style.
GWL_STYLE, Sets a new Window Style

GWL_WNDPROC :Sets a new address for the window procedure.

In Windows NT/2000/XP, You cannot change this attribute if the window
does not belong to the same process as the calling thread.

GWL_HINSTANCE: Sets a new application instance handle.
GWL_ID, Sets a new identifier of the window.

GWL_USERDATA: Sets the user data associated with the window. This
data is intended for use by the application that created the window. Its
value is initially zero.

The following values are also available when the hWnd parameter
identifies a dialog box.

DWL_DLGPROC: Sets the new address of the dialog box procedure.
DWL_MSGRESULT: Sets the return value of a message processed in the
dialog box procedure.

DWL_USER: Sets new extra information that is private to the application,
such as handles or pointers.

dwNewLong
This style specifies the replacement value.

LONG GetWindowLong(

HWND hWnd, // handle to window
int nIndex // offset of value to retrieve
);

Window Classes 7

Certain window data is cached, so changes you make using SetWindowLong will not take
effect until you call the SetWindowPos function. Specifically, if you change any of the
frame styles, you must call SetWindowPos with the SWP_FRAMECHANGED flag for
the cache to be updated properly.
If you use SetWindowLong with the GWL_WNDPROC index to replace the window
procedure, the window procedure must conform to the guidelines specified in the
description of the WindowProc callback function.
If you use SetWindowLong with the DWL_MSGRESULT index to set the return value for
a message processed by a dialog procedure, you should return TRUE directly afterwards.
Otherwise, if you call any function that results in your dialog procedure receiving a
window message, the nested window message could overwrite the return value you set
using DWL_MSGRESULT.
Calling SetWindowLong with the GWL_WNDPROC index creates a subclass of the
window class used to create the window. An application can subclass a system class, but
should not subclass a window class, created by another process. The SetWindowLong
function creates the window subclass by changing the window procedure associated with a
particular window class, causing the system to call the new window procedure instead of
the previous one. An application must pass any messages not processed by the new
window procedure to the previous window procedure by calling CallWindowProc. This
allows the application to create a chain of window procedures.
Reserve extra window memory by specifying a nonzero value in the cbWndExtra member
of the WNDCLASSEX structure used with the RegisterClassEx function.

12.5 Sub-Classing
Sub-classing allows you to change the behavior of an existing window, typically a control,
by inserting a message map to intercept the window's messages. For example, suppose you
have a dialog box with an edit control that you want to accept only non-numeric characters.
You could do this by intercepting WM_CHAR messages destined for the edit control and
discarding any messages indicating that a numeric character has been entered.

Subclassing is a technique that allows an application to intercept messages destined for
another window. An application can augment, monitor, or modify the default behavior of a
window by intercepting messages meant for another window. Sub-classing is an effective
way to change or extend the behavior of a window without redeveloping the window.
Subclassing the default control window classes (button controls, edit controls, list controls,
combo box controls, static controls, and scroll bar controls) is a convenient way to obtain
the functionality of the control and to modify its behavior. For example, if a multi-line edit
control is included in a dialog box and the user presses the ENTER key, the dialog box
closes. By subclassing the edit control, an application can have the edit control insert a
carriage return and line feed into the text without exiting the dialog box. An edit control
does not have to be developed specifically for the needs of the application

The Basics
The first step in creating a window is registering a window class by filling a WNDCLASS
structure and calling RegisterClass. One element of the WNDCLASS structure is the
address of the window procedure for this window class. When a window is created, the 32-
bit versions of the Microsoft Windows operating system take the address of the window
procedure in the WNDCLASS structure and copy it to the new window's information
structure. When a message is sent to the window, Windows calls the window procedure
through the address in the window's information structure. To subclass a window, you
substitute a new window procedure that receives all the messages meant for the original

Window Classes 8

window by substituting the window procedure address with the new window procedure
address.
When an application subclasses a window, it can take three actions with the message: (1)
pass the message to the original window procedure; (2) modify the message and pass it to
the original window procedure; (3) not pass the message.
The application subclassing a window can decide when to react to the messages it receives.
The application can process the message before, after, or both before and after passing the
message to the original window procedure.

Types of Subclassing
The two types of subclassing are instance subclassing and global subclassing.

• Instance subclassing is subclassing an individual window's information structure.
With instance subclassing, only the messages of a particular window instance are
sent to the new window procedure.

• Global subclassing is replacing the address of the window procedure in the
WNDCLASS structure of a window class. All subsequent windows created with
this class have the substituted window procedure's address. Global subclassing
affects only windows created after the subclass has occurred. At the time of the
subclass, if any windows of the window class that is being globally subclassed
exist, the existing windows are not affected by the global subclass. If the
application needs to affect the behavior of the existing windows, the application
must subclass each existing instance of the window class.

Win32 Subclassing Rules

Two sub-classing rules apply to instance and global sub-classing in Win32.

Subclassing is allowed only within a process. An application cannot subclass a window or
class that belongs to another process.

The reason for this rule is simple: Win32 processes have separate address spaces. A
window procedure has an address in a particular process. In a different process, that
address does not contain the same window procedure. As a result, substituting an address
from one process with an address from another process does not provide the desired result,
so the 32-bit versions of Windows do not allow this substitution (that is, subclassing from a
different process) to take place. The SetWindowLong and SetClassLong functions prevent
this type of subclassing. You can not subclass a window or class that is in another process.
End of story.

One way to add subclassing code into another process is much more complicated: It
involves using the OpenProcess, WriteProcessMemory, and CreateRemoteThread
functions to inject code into the other process. I don't recommend this method and won't go
into any details on how to do it. For developers who insist on using this method,

The subclassing process may not use the original window procedure address directly.

In Win16, an application could use the window procedure address returned from
SetWindowLong or SetClassLong to call the procedure directly. After all, the return value is
simply a pointer to a function, so why not just call it? In Win32, this is a definitive no-no.

Window Classes 9

The value returned from SetWindowLong and GetClassLong may not be a pointer to the
previous window procedure at all. Win32 may return a pointer to a data structure that it can
use to call the actual window procedure. This occurs in Windows NT when an application
subclasses a Unicode window with a non-Unicode window procedure, or a non-Unicode
window with a Unicode window procedure. In this case, the operating system must
perform a translation between Unicode and ANSI for the messages the window receives. If
an application uses the pointer to this structure to directly call the window procedure, the
application will immediately generate an exception. The only way to use the window
procedure address returned from SetWindowLong or SetClassLong is as a parameter to
CallWindowProc.

Instance Subclassing

The SetWindowLong function is used to subclass an instance of a window. The application
must have the address of the subclass function. The subclass function is the function that
receives the messages from Windows and passes the messages to the original window
procedure. The subclass function must be exported in the application's or the DLL's module
definition file.
The application subclassing the window calls SetWindowLong with the handle to the
window the application wants to subclass, the GWL_WNDPROC option (defined in
WINDOWS.H), and the address of the new subclass function. SetWindowLong returns a
DWORD, which is the address of the original window procedure for the window. The
application must save this address to pass the intercepted messages to the original window
procedure and to remove the subclass from the window. The application passes the
messages to the original window procedure by calling CallWindowProc with the address of
the original window procedure and the hWnd, Message, wParam, and lParam parameters
used in Windows messaging. Usually, the application simply passes the arguments it
receives from Windows to CallWindowProc.
The application also needs the original window procedure address for removing the
subclass from the window. The application removes the subclass from the window by
calling SetWindowLong again. The application passes the address of the original window
procedure with the GWL_WNDPROC option and the handle to the window being
subclassed.

The following code subclasses and removes a subclass to an edit control:

LONG FAR PASCAL SubClassFunc(HWND hWnd,UINT Message,WPARAM wParam,
 LONG lParam);

FARPROC lpfnOldWndProc;
HWND hEditWnd;

//
// Create an edit control and subclass it.
// The details of this particular edit control are not important.
//
hEditWnd = CreateWindow("EDIT", "EDIT Test",
 WS_CHILD | WS_VISIBLE | WS_BORDER ,
 0, 0, 50, 50,
 hWndMain,
 NULL,

Window Classes 10

 hInst,
 NULL);
//
// Now subclass the window that was just created.
//
lpfnOldWndProc = (FARPROC)SetWindowLong(hEditWnd,
 GWL_WNDPROC, (DWORD) SubClassFunc);
.
.
.
//
// Remove the subclass for the edit control.
//
SetWindowLong(hEditWnd, GWL_WNDPROC, (DWORD) lpfnOldWndProc);

//
// Here is a sample subclass function.
//
LONG FAR PASCAL SubClassFunc(HWND hWnd,
 UINT Message,
 WPARAM wParam,
 LONG lParam)
{
 //
 // When the focus is in an edit control inside a dialog box, the
 // default ENTER key action will not occur.
 //

 if (Message == WM_GETDLGCODE)
 return DLGC_WANTALLKEYS;

 return CallWindowProc(lpfnOldWndProc, hWnd, Message, wParam,
 lParam);
}

12.6 Get or Set ClassLong

The GetClassLong() function retrieves the specified 32-bit (LONG) value from the
WNDCLASS structure associated with the specified window. This will can be back ground
brush, handle to instance, handle to windows procedure and handle to Icon etc.

LONG SetClassLong(
HWND hWnd, // handle to window
int nIndex, // offset of value to set n LONG dwNewLong // new value
);

Parameters
hWnd

Handle to the window and, indirectly, the class to which the window
belongs.

Window Classes 11

nIndex
This member specifies the 32-bit value to replace. To set a 32-bit value in
the extra class memory, specify the positive, zero-based byte offset of the
value to be set. Valid values are in the range zero through the number of
bytes of extra class memory, minus four; for example, if you specified 12
or more bytes of extra class memory, a value of 8 would be an index to the
third 32-bit integer. To set any other value from the WNDCLASSEX
structure, specify one of the following values.

GCL_CBCLSEXTRA: Sets the size, in bytes, of the extra memory
associated with the class. Setting this value does not change the number of
extra bytes already allocated.
GCL_CBWNDEXTRA: Sets the size, in bytes, of the extra window
memory associated with each window in the class. Setting this value does
not change the number of extra bytes already allocated.

GCL_HBRBACKGROUND: Replaces a handle to the background brush
associated with the class.

GCL_HCURSOR: Replaces a handle to the cursor associated with the
class.
GCL_HICON: Replaces a handle to the icon associated with the class.

GCL_HICONSM: Replace a handle to the small icon associated with the
class.

GCL_HMODULE: Replaces a handle to the module that registered the
class.

GCL_MENUNAME: Replaces the address of the menu name string. The
string identifies the menu resource associated with the class.

GCL_STYLE: Replaces the window-class style bits.

GCL_WNDPROC: Replaces the address of the window procedure
associated with the class.

dwNewLong
This member specifies the replacement value.

Return Value
If the function succeeds, the return value is the previous value of the specified 32-
bit integer. If the value was not previously set, the return value is zero.
If the function fails, the return value is zero. To get extended error information, call
GetLastError.

LONG GetClassLong(
HWND hWnd, // handle to window
int nIndex // offset of value to retrieve
);

If you use the SetClassLong function and the GCL_WNDPROC index to replace the
window procedure, the window procedure must conform to the guidelines specified in the
description of the WindowProc callback function.

Window Classes 12

Calling SetClassLong with the GCL_WNDPROC index creates a subclass of the window
class that affects all windows subsequently created with the class. An application can
subclass a system class, but should not subclass a window class created by another process.
Reserve extra class memory by specifying a nonzero value in the cbClsExtra member of
the WNDCLASSEX structure used with the RegisterClass function.
Use the SetClassLong function with care. For example, it is possible to change the
background color for a class by using SetClassLong, but this change does not immediately
repaint all windows belonging to the class.

Difference between SetWindowLong and SetClassLong

• In SetWindowLong(), behavior of a single window is modified.
• In SetClassLong(), behavior of the window class is modified.

12.7 Sub-Classing (Elaboration)

We elaborate sub-classing by using following examples.

DLGPROC oldWindowProc;
hWnd = CreateWindow("BUTTON", "Virtual University", BS_AUTOCHECKBOX |
WS_VISIBLE | WS_OVERLAPPEDWINDOW,
50, 50, 200, 100,
 NULL, NULL, hInstance, NULL);

oldWindowProc = (WNDPROC) SetWindowLong (hWnd,
 GWL_WNDPROC, (LONG) myWindowProc);

while(GetMessage(&msg, NULL, 0, 0) > 0)
{

DispatchMessage(&msg);
}

return msg.wParam;

New Window Procedure

LRESULT CALLBACK myWindowProc(HWND hWnd, UINT message, WPARAM
wParam, LPARAM lParam)
{

 switch (message)
{
case WM_LBUTTONDOWN:

MessageBox(hWnd, "Left mouse button pressed.", "Message", MB_OK);
 DestroyWindow(hWnd);
break;

case WM_DESTROY:
PostQuitMessage(0);

Window Classes 13

break;

default:
return CallWindowProc(oldWindowProc, hWnd, message,

 wParam, lParam);
}

return 0;
}

12.8 Supper-Classing
Super-classing defines a class that adds new functionality to a predefined window class,
such as the button or list box controls.

Superclassing involves creating a new class that uses the window procedure of an existing
class for basic functionality.

Super-Classing (Example)
Super-classing defines a class that adds new functionality to a predefined window class,
such as the button or list box controls.

The following example defines a new class with partly or wholly modified behavior of a
pre-defined window class.

DLGPROC oldWindowProc; // Global variable
WNDCLASS wndClass;
GetClassInfo(hInstance, “BUTTON”, &wndClass);

GetClassInfo API gets the information about class. Information includes windows style,
procedure, background brush, icon and cursors.

WndClass.hInstance = hInstance;
wndClass.lpszClassName = “BEEPBUTTON”;
OldWindowProc = wndClas.lpfnWndProc;
wndClas.lpfnWndProc = myWindowProc;

After getting class information we fill the new window class and register it again by using
RegisterClass API

if(! RegisterClass(&wndClass))
{

return 0;
}

Window Classes 14

After registering new window class with the new procedure, create a window with the new
register class name. This registered class name will be different from the old registered
class name.

hWnd = CreateWindow(“BEEPBUTTON", "Virtual University", WS_VISIBLE |
WS_OVERLAPPEDWINDOW,
50, 50, 200, 100,
NULL, NULL, hInstance, NULL);

noldWindowProc = (WNDPROC)SetWindowLong(hWnd, GWL_WNDPROC,
(LONG)myWindowProc);

while(GetMessage(&msg, NULL, 0, 0) > 0)
{

if(msg.message == WM_LBUTTONUP)
DispatchMessage(&msg);

}

return msg.wParam

New Window Procedure

This new windows procedure myWindowProc will call the old window procedure after its
normal message processing.

LRESULT CALLBACK myWindowProc(HWND hWnd, UINT message,
WPARAM wParam, LPARAM lParam)
{

 switch (message)
{
case WM_LBUTTONDOWN:
MessageBeep(0xFFFFFFFF);
Break;
default:
return CallWindowProc(oldWindowProc, hWnd, message, wParam, lParam);

}

return 0;

}

Tips: After implementation of Sub-classing or Super Classing don’t forget to call window
procedure function.

Window Classes 15

Summary
In this lecture, we learnt about system windows classes. System window classes include
buttons, combo boxes, list box, etc. We studied about Button System Window class. We
discussed how to change windows attributes by using SetWindowLong and
GetWindowLong APIs. Using SetWindowLong and GetWindowLong, we can also make a
new procedure and change the message behavior of a window. Using SetClassLong and
GetClassLong, we can change one of the attributes of a registered class. Changing class
values will effect the change for every window that is using this class. This is called sub-
classing. We also knew about Super-classing in which we register new window class by
using the properties of previous window class.

Chapter 13

13.1 GDI (GRAPHICS DEVICE INTERFACE) 2
13.2 GDI OBJECTS AND ITS API’S 3
GDI OBJECTS CREATION 3
WHAT HAPPENS DURING SELECTION? 4
MEMORY USAGE 6
CREATING VS. RECREATING 7
STOCK OBJECTS 7
ERROR HANDLING 8
DELETION OF GDI OBJECTS 9
UNREALIZEOBJECT 10
SPECIAL CASES 11
13.3 GDI FROM THE DRIVER’S PERSPECTIVE (FOR ADVANCED USERS) 12
13.4 DEVICE CONTEXT (DC) 13
DISPLAY DEVICE CONTEXT CACHE 13
DISPLAY DEVICE CONTEXT DEFAULTS 14
COMMON DISPLAY DEVICE CONTEXT 15
PRIVATE DISPLAY DEVICE CONTEXT 16
CLASS DISPLAY DEVICE CONTEXT 17
WINDOW DISPLAY DEVICE CONTEXT 18
PARENT DISPLAY DEVICE CONTEXT 18
WINDOW UPDATE LOCK 19
ACCUMULATED BOUNDING RECTANGLE 19
13.5 STEPS INVOLVED IN OUTPUT OF A TEXT STRING IN THE CLIENT AREA OF THE
APPLICATION 20
PRINTING TEXT STRING (EXAMPLE) 20
13.6 GETDC 20
HWND 20
[IN] HANDLE TO THE WINDOW WHOSE DC IS TO BE RETRIEVED. IF THIS VALUE IS NULL,
GETDC RETRIEVES THE DC FOR THE ENTIRE SCREEN. 20
13.7 TEXTOUT 21
13.8 RELEASEDC 22
13.9 WM_PAINT 22
13.10 BEGINPAINT 23
13.11 ENDPAINT 23
13.12 WM_SIZING 24
13.13 CS_HREDRAW AND CS_VREDRAW 24
SUMMARY 24
EXERCISES 25

Graphics Device Interface 2

13.1 GDI (Graphics Device Interface)

In previous lectures we have got some understanding about GDI. In this lecture, we will
take a detail look on Graphics Device Interface and its Device independency.

The graphical component of the Microsoft® Windows™ graphical environment is the
graphics device interface (GDI). It communicates between the application and the device
driver, which performs the hardware-specific functions that generate output. By acting as
a buffer between applications and output devices, GDI presents a device-independent
view of the world for the application while interacting in a device-dependent format with
the device.

In the GDI environment there are two working spaces—the logical and the physical.
Logical space is inhabited by applications; it is the "ideal" world in which all colors are
available, all fonts scale, and output resolution is phenomenal. Physical space, on the
other hand, is the real world of devices, with limited color, strange output formats, and
differing drawing capabilities. In Windows, an application does not need to understand
the quirkiness of a new device. GDI code works on the new device if the device has a
device driver.

GDI concepts mapped between the logical and the physical are objects (pens, brushes,
fonts, palettes, and bitmaps), output primitives, and coordinates.

Objects are converted from logical objects to physical objects using the realization
process. For example, an application creates a logical pen by calling CreatePen with the
appropriate parameters. When the logical pen object is selected into a device context
(DC) using SelectObject, GDI realizes the pen into a physical pen object that is used to
communicate with the device. GDI passes the logical object to the device, and the device
creates a device-specific object containing device-specific information. During
realization, requested (logical) color is mapped to available colors, fonts are matched to
the best available fonts, and patterns are prepared for output. Font selection is more
complex than other realizations, and GDI, not the driver, performs most of the realization
work. Similarly, palette realization (done at RealizePalette time as opposed to
SelectPalette time) is done entirely within GDI. Bitmaps are an exception to the object
realization process; although they have the device-independent bitmap (DIB) logical
form, bitmap objects are always device specific and are never actually realized.

Output primitives are similarly passed as "logical" requests (to stretch the definition) to
the device driver, which draws the primitive to the best of its ability and resolution. If the
driver cannot handle a certain primitive—for example, it cannot draw an ellipse—GDI
simulates the operation. For an Ellipse call, GDI calculates a polygon that represents a
digitized ellipse. The resulting polygon can then be simulated as a polyline and a series of
scanline fills if the device cannot draw polygons itself. The application, though, does not
care what system component does the actual work; the primitive gets drawn.

Graphics Device Interface 3

An application can set up for itself any logical coordinate system, using SetMapMode,
SetWindowExt, SetWindowOrg, SetViewportExt, and SetViewportOrg. In GDI that
coordinate system is mapped to the device coordinate system, in which one unit equals
one pixel and (0,0) defines the topmost, leftmost pixel on the output surface. The device
driver sees only coordinates in its own space, whereas the application operates only in a
coordinate space of its own, disregarding the physical pixel layout of the destination.

By maintaining the two separate but linked spaces, logical for the applications and
physical for the devices, GDI creates a device-independent interface. Applications that
make full use of the logical space and avoid device-specific assumptions can expect to
operate successfully on any output device.

13.2 GDI Objects and its API’s
This topic will discuss Graphics Device Objects and the API‘s used to create, select, get,
release, draw and delete GDI objects.

GDI objects Creation

Each type of object has a routine or a set of routines that is used to create that object.

Pens are created with the CreatePen and the CreatePenIndirect functions. An
application can use either function to define three pen attributes: style, width, and color.
The background mode during output determines the color (if any) of the gaps in any
nonsolid pen. The PS_INSIDEFRAME style allows dithered wide pens and a different
mechanism for aligning the pen on the outside of filled primitives.

Brushes are created with the CreateSolidBrush, CreatePatternBrush, CreateHatchBrush,
CreateDIBPatternBrush, and CreateBrushIndirect functions. Unlike other objects, brushes
have distinct types that are not simply attributes. Hatch brushes are special because they
use the current background mode (set with the SetBkMode function) for output.

Fonts are created with the CreateFont and CreateFontIndirect functions. An application
can use either function to specify the 14 attributes that define the desired size, shape, and
style of the logical font.

Bitmaps are created with the CreateBitmap, CreateBitmapIndirect,
CreateCompatibleBitmap, and CreateDIBitmap functions. An application can use all four
functions to specify the dimensions of the bitmap. An application uses the CreateBitmap
and CreateBitmapIndirect functions to create a bitmap of any color format. The
CreateCompatibleBitmap and CreateDIBitmap functions use the color format of the
device context. A device supports two bitmap formats: monochrome and device-specific
color. The monochrome format is the same for all devices. Using an output device
context (DC) creates a bitmap with the native color format; using a memory DC creates a
bitmap that matches the color format of the bitmap currently selected into that DC. (The
DCs color format changes based on the color format of the currently selected bitmap.)

Graphics Device Interface 4

Palette objects are created with the CreatePalette function. Unlike pens, brushes, fonts,
and bitmaps, the logical palette created with this function can be altered later with the
SetPaletteEntries function or, when appropriate, with the AnimatePalette function.

Regions can be created with the CreateRectRgn, CreateRectRgnIndirect,
CreateRoundRectRgn, CreateEllipticRgn, CreateEllipticRgnIndirect, CreatePolygonRgn,
and CreatePolyPolygonRgn functions. Internally, the region object that each function
creates is composed of a union of rectangles with no vertical overlap. Regions created
based on nonrectangular primitives simulate the complex shape with a series of
rectangles, roughly corresponding to the scanlines that would be used to paint the
primitive. As a result, an elliptical region is stored as many short rectangles (a bit fewer
than the height of the ellipse), which leads to more cumbersome and slower region
calculations and clipping. Coordinates used for creating regions are not specified in
logical units as they are for other objects. The graphics device interface (GDI) uses them
without transformation. GDI translates coordinates for clip regions to be relative to the
upper-left corner of a window when applicable. Region objects can be altered with the
CombineRgn and OffsetRgn functions.

What Happens During Selection
Selecting a logical object into a DC involves converting the logical object into a physical
object that the device driver uses for output. This process is called realization. The
principle is the same for all objects, but the actual operation is different for each object
type. When an application changes the logical device mapping of a DC (by changing the
mapping mode or the window or viewport definition), the system re-realizes the currently
selected pen and font before they are used the next time. Changing the DCs coordinate
mapping scheme alters the physical interpretation of the logical pens width and the
logical fonts height and width by essentially reselecting the two objects.

Pens are the simplest of objects. An application can use three attributes to define a logical
pen—width, style, and color. Of these, the width and the color are converted from logical
values to physical values. The width is converted based on the current mapping mode (a
width of 0 results in a pen with a one-pixel width regardless of mapping mode), and the
color is mapped to the closest color the device can represent. The physical color is a solid
color (that is, it has no dithering). If the pen style is set to PS_INSIDEFRAME and the
physical width is not 1, however, the pen color can be dithered. The pen style is recorded
in the physical object, but the information is not relevant until the pen is actually used for
drawing.

Logical brushes have several components that must be realized to make a physical brush.
If the brush is solid, a physical representation must be calculated by the device driver; it
can be a dithered color (represented as a bitmap with multiple colors that when viewed by
the human eye approximates a solid color that cannot be shown as a single pixel on the
device), or it can be a solid color. Pattern brush realization involves copying the bitmap
that defines the pattern and, for color patterns, ensuring that the color format is
compatible with the device. Usually, the device driver also builds a monochrome version
of a color pattern for use with monochrome bitmaps. With device-independent bitmap
(DIB) patterns, GDI converts the DIB into a device-dependent bitmap using SetDIBits

Graphics Device Interface 5

before it passes a normal pattern brush to the device driver. The selection of a DIB
pattern brush with a two-color DIB and DIB_RGB_COLORS into a monochrome DC is
a special case; GDI forces the color table to have black as index 0 and white as index 1 to
maintain foreground and background information. The device driver turns hatched
brushes into pattern brushes using the specified hatch scheme; the foreground and
background colors at the time of selection are used for the pattern. All brush types can be
represented at the device-driver level as bitmaps (usually 8-by-8) that are repeatedly blted
as appropriate. To allow proper alignment of these bitmaps, GDI realizes each physical
brush with a brush origin. The default origin is (0,0) and can be changed with the
SetBrushOrg function (discussed in more detail below).

The GDI component known as the font mapper examines every physical font in the
system to find the one that most closely matches the requested logical font. The mapper
penalizes any font property that does not match. The physical font chosen is the one with
the smallest penalty. The possible physical fonts that are available are raster, vector,
TrueType fonts installed in the system, and device fonts built into or downloaded to the
output device. The logical values for height and width of the font are converted to
physical units based on the current mapping mode before the font mapper examines them.

Selecting a bitmap into a memory DC involves nothing more than performing some error
checking and setting a few pointers. If the bitmap is compatible with the DC and is not
currently selected elsewhere, the bits are locked in memory and the appropriate fields are
set in the DC. Most GDI functions treat a memory DC with a selected bitmap as a regular
device DC; only the device driver acts differently, based on whether the output
destination is memory or the actual device. The color format of the bitmap defines the
color format of the memory DC. When a memory DC is created with
CreateCompatibleDC, the default monochrome bitmap is selected into it, and the color
format of the DC is monochrome. When an appropriate color bitmap (one whose color
resolution matches that of the device) is selected into the DC, the color format of the DC
changes to reflect this event. This behavior affects the result of the
CreateCompatibleBitmap function, which creates a monochrome bitmap for a
monochrome DC and a color bitmap for a color DC.

Palettes are not automatically realized during the selection process. The RealizePalette
function must be explicitly called to realize a selected palette. If a palette is realized on a
nonpalette device, nothing happens. On a palette device, the logical palette is color-
matched to the hardware palette to get the best possible matching. Subsequent references
to a color in the logical palette are mapped to the appropriate hardware palette color.

Nothing is actually realized when a clip region is selected into a DC. A copy of the region
is made and placed in the DC. This new clip region is then intersected with the current
visible region (computed by the system and defining how much of the window is visible
on the screen), and the DC is ready for drawing. Calling SelectObject with a region is
equivalent to using the SelectClipRgn function.

Graphics Device Interface 6

Memory Usage
The amount of memory each object type consumes in GDIs heap and in the global
memory heap depends on the type of the object.

This topic is discussed in Microsoft Documentation 2003 Release.

The following table describes memory used for storing logical objects.

Object type GDI heap use (in bytes) Global memory use (in
bytes)

Pen 10 + sizeof(LOGPEN) 0

Brush 10 + sizeof(LOGBRUSH) + 6 0

pattern brush same as brush + copy of bitmap

Font 10 + sizeof(LOGFONT) 0

Bitmap 10 + 18 32 + room for bits

Palette 10 + 10 4 + (10 * num entries)

rectangular region 10 + 26 0

solid complex region rect region + (6 * (num scans –1)) 0

region with hole region + (2 * num scans with hole) 0

When an object is selected into a DC, it may have corresponding physical (realized)
information that is stored globally and in GDIs heap. The table below details that use.
The size of realized versions of objects that devices maintain is determined by the device.

Object type GDI heap use (in bytes) Global memory use

pen 10 + 8 + device info 0

brush 10 + 14 + device info 0

font 55 (per realization) font data (per physical font)

bitmap 0 0

palette 0 0

region intersection of region with
visible region

0

As a result of the font caching scheme, several variables determine how much memory a
realized font uses. If two logical fonts are mapped to the same physical font, only one
copy of the actual font is maintained. For TrueType fonts, glyph data is loaded only upon
request, so the size of the physical font grows (memory permitted) as more characters are
needed. When the font can grow no larger, characters are cached to use the available

Graphics Device Interface 7

space. The font data stored for a single physical font ranges from 48 bytes for a hardware
font to 120K for a large bitmapped font.

Physical pens and brushes are not deleted from the system until the corresponding object
is deleted. The physical object that corresponds to a selected logical object is locked in
GDIs heap. (It is unlocked upon deselection.) Similarly, a font "instance" is cached in the
system to maintain a realization of a specific logical font on a specific device with a
specific coordinate mapping. When the logical font is deleted, all of its instances are
removed as well.

When the clip region intersects with the visible region, the resulting intersection is
roughly the same size as the initial clip region. This is always the case when the DC
belongs to the topmost window and the clip region is within the windows boundary.

Creating vs. Recreating
If an application uses an object repeatedly, should the object be created once and cached
by the application, or should the application recreate the object every time it is needed
and delete it when that part of the drawing is complete? Creating on demand is simpler
and saves memory in GDIs heap (objects do not remain allocated for long). Caching the
objects within an application involves more work, but it can greatly increase the speed of
object selection and realization, especially for fonts and sometimes for palettes.

The speed gains are possible because GDI caches physical objects. Although realizing a
new logical pen or brush simply involves calling the device driver, realizing a logical font
involves a cumbersome comparison of the logical font with each physical font available
in the system. An application that wants to minimize font-mapping time should cache
logical font handles that are expected to be used again. All previous font-mapping
information is lost when a logical font handle is deleted; a recreated logical font must be
realized from scratch.

Applications should cache palette objects for two reasons (both of which apply only on
palette devices). Most importantly, because bitmaps on palette devices are stored based
on a specific logical bitmap, using a different palette alters the bitmaps coloration and
meaning. The second reason is a speed issue; the foreground realization of a palette is
cached by GDI and is not calculated after the first realization. A new foreground
realization must be computed from scratch for a newly created palette (or a palette altered
by the SetPaletteEntries function or unrealized with the UnrealizeObject function).

Stock Objects
During initialization, GDI creates a number of predefined objects that any application can
use. These objects are called stock objects. With the exception of regions and bitmaps,
every object type has at least one defined stock object. An application calls the
GetStockObject function to get a handle to a stock object, and the returned handle is then
used as a standard object handle. The only difference is that no new memory is used
because no new object is created. Also, because the system owns the stock objects, an

Graphics Device Interface 8

application is not responsible for deleting the object after use. Calling the DeleteObject
function with a stock object does nothing.

Several stock fonts are defined in the system, the most useful being SYSTEM_FONT.
This font is the default selected into a DC and is used for drawing the text in menus and
title bars. Because this object defines only a logical font, the physical font that is actually
used depends on the mapping mode and on the resolution of the device. A screen DC
with a mapping mode of MM_TEXT has the system font as the physical font, but if the
mapping mode is changed or if a different device is used, the physical font is no longer
guaranteed to be the same. A change of behavior for Windows version 3.1 is that a stock
font is never affected by the current mapping mode; it is always realized as if MM_TEXT
were being used. Note that a font created by an application as a copy of a stock font does
not have this immunity to scaling.

No stock bitmap in the system is accessible by means of the GetStockObject function, but
GDI uses a default one-by-one monochrome bitmap as a stock object. This default bitmap
is selected into a memory DC during creation of that DC. The bitmaps handle can be
obtained by selecting a bitmap into a freshly minted memory DC; the return value from
the SelectObject function is the stock bitmap.

Error Handling
The two common types of errors associated with objects are failure to create and failure
to select. Both are most commonly associated with low-memory conditions.

During the creation process, GDI allocates a block of memory to store the logical object
information. When the heap is full, applications cannot create any more objects until
some space is freed. Bitmap creation tends to fail not because GDIs heap is full but
because available global memory is insufficient for storing the bits themselves. Palettes
also have a block of global memory that must be allocated by GDI to hold the palette
information. The standard procedure for handling a failed object creation is to use a
corresponding stock object in its place, although a failed bitmap creation is usually more
limiting. An application usually warns the user that memory is low when an object
creation or selection fails.

Out-of-memory conditions can also occur when a physical object is being realized.
Realization also involves GDI allocating heap memory, and realizing fonts usually
involves global memory as well. If the object was realized in the past for the same DC,
new allocation is unnecessary (see the "Creating vs. Recreating" section). If a call to
SelectObject returns an error (0), no new object is selected into the DC, and the
previously selected object is not deselected.

Another possible error applies only to bitmaps. Attempting to select a bitmap with a color
format that does not match the color format of the DC results in an error. Monochrome
bitmaps can be selected into any memory DC, but color bitmaps can be selected only into
a memory DC of a device that has the same color format. Additionally, bitmaps can be
selected only into memory DCs; they cannot be selected into a DC connected to an actual
output device or into metafile DCs.

Graphics Device Interface 9

Some object selections do not fail. Selecting a default object (WHITE_BRUSH,
BLACK_PEN, SYSTEM_FONT, or DEFAULT_PALETTE stock objects) into a screen
DC or into a screen-compatible memory DC does not fail when the mapping mode is set
to MM_TEXT. Also, a bitmap with a color format matching a memory DC always
successfully selects into that DC. Palette selection has no memory requirements and
always succeeds.

Deletion of GDI Objects
All applications should delete objects when they are no longer needed. To delete an
object properly, first deselect it from any DC into which it was previously selected. To
deselect an object, an application must select a different object of the same type into the
DC. Common practice is to track the original object that was selected into the DC and
select it back when all work is accomplished with the new object. When a region is
selected into a DC with the SelectObject or SelectClipRgn function, GDI makes a copy of
the object for the DC, and the original region can be deleted at will.

hNewPen = CreatePen(1, 1, RGB(255, 0, 0));

if (hNewPen) //if the new pen is selected then ok else do

{ hOldPen = SelectObject(hDC, hNewPen);

}

else

 hOldPen = NULL; // no selection

 Rectangle(hDC,x,y,ex,ey) // drawing operations

if (hOldPen)

 SelectObject(hDC, hOldPen); // deselect hNewPen (if selected)

if (hNewPen)

 DeleteObject(hDC, hNewPen); // delete pen if created

An alternative method is to select in a stock object returned from the GetStockObject
function. This approach is useful when it is not convenient to track the original object. A
DC is considered "clean" of application-owned objects when all currently selected objects
are stock objects. The three exceptions to the stock object rule are fonts (only the
SYSTEM_FONT object should be used for this purpose); bitmaps, which do not have a
stock object defined (the one-by-one monochrome stock bitmap is a constant object that
is the default bitmap of a memory DC); and regions, which have no stock object and have
no need for one.

Graphics Device Interface 10

hNewPen = CreatePen(1, 1, RGB(255, 0, 0));

if (hNewPen)

{

 if (SelectObject(hDC, hNewPen))

 {

 SelectObject(hDC, GetStockObject(BLACK_PEN));

 }

 DeleteObject(hDC, hNewPen);

}

Note: The rumor that an application should never delete a stock object is far from the
truth. Calling the DeleteObject function with a stock object does nothing. Consequently,
an application need not ensure that an object being deleted is not a stock object.

UNREALIZEOBJECT

The UnrealizeObject function affects only brushes and palettes. As its name implies, the
UnrealizeObject function lets an application force GDI to re-realize an object from
scratch when the object is next realized in a DC.

The UnrealizeObject function lets an application reset the origin of the brush. When a
patterned, hatched, or dithered brush is used, the device driver handles it as an eight-by-
eight bitmap. During use, the driver aligns a point in the bitmap, known as the brush
origin, to the upper-left corner of the DC. The default brush origin is (0,0). If an
application wants to change the brush origin, it uses the SetBrushOrg function. This
function does not change the origin of the current brush; it sets the origin of the brush for
the next time that the brush is realized. The origin of a brush that has never been selected
into a DC can be set as follows:

// Create the brush.

hBrush = CreatePatternBrush(.....);

// Set the origin as needed.

SetBrushOrg(hDC, X, Y);

// Select (and realize) the brush with the chosen origin.

SelectObject(hDC, hBrush);

Graphics Device Interface 11

If, on the other hand, the brush is currently selected into a DC, calling the SetBrushOrg
function alone accomplishes nothing. Because the new origin does not take effect until
the brush is realized anew, the application must force this re-realization by using the
UnrealizeObject function before the brush is reselected into a DC. The following sample
code changes the origin of a brush that is initially selected into a DC:

// Deselect the brush from the DC.

hBrush = SelectObject(hDC, GetStockObject(BLACK_BRUSH));

// Set a new origin.

SetBrushOrg(hDC, X, Y);

// Unrealize the brush to force re-realization.

UnrealizeObject(hBrush);

// Select (and hence re-realize) the brush.

SelectObject(hDC, hBrush);

The UnrealizeObject function can also be called for a palette object, although the effect is
a bit more subtle. (As is common with the palette functions, nothing happens on a
nonpalette device.) The function forces the palette to be realized from scratch the next
time the palette is realized, thereby ignoring any previous mapping. This is useful in
situations in which an application expects that the palette will realize differently the next
time around, perhaps matching more effectively with a new system palette and not
forcing a system palette change. Any bitmaps created with the original realization of the
palette are no longer guaranteed to be valid.

Special Cases
Palette objects are selected into DCs using the SelectPalette function. The reason for this
additional, seemingly identical, function is that palette selection has an additional
parameter that defines whether the palette is being selected as a foreground or as a
background palette, which affects palette realization on palette devices. Calling the
SelectObject function with a palette returns an error. Palettes are deleted using the
DeleteObject function.

A clip region can be selected into a DC by calling either the SelectClipRgn or the
SelectObject function. Both functions perform identically with the exception of selecting
a NULL handle in place of a region. SelectClipRgn can be used to clear the current
clipping state by calling the function as follows:

Graphics Device Interface 12

Note: Parameter description of the API’s used above, can be best found from Microsoft
site, or contact Virtual University resource.

13.3 GDI from the Driver’s Perspective (for advanced users)

Note: The documentation depicted below is for the advanced readers or those who are
interested to know more about GDI driver model. Novice can skip this topic.

GDI is the intermediary support between a Windows NT-based graphics driver and an
application. Applications call Win32 GDI functions to make graphics output requests.
These requests are routed to kernel-mode GDI. Kernel-mode GDI then sends these
requests to the appropriate graphics driver, such as a display driver or printer driver.
Kernel-mode GDI is a system-supplied module that cannot be replaced.

GDI communicates with the graphics driver through a set of graphics device driver
interface (graphics DDI) functions. These functions are identified by their Drv prefix.
Information is passed between GDI and the driver through the input/output parameters of
these entry points. The driver must support certain DrvXxx functions for GDI to call. The
driver supports GDI's requests by performing the appropriate operations on its associated
hardware before returning to GDI.

GDI includes many graphics output capabilities in itself, eliminating the need for the
driver to support these capabilities and thereby making it possible to reduce the size of
the driver. GDI also exports service functions that the driver can call, further reducing the
amount of support the driver must provide. GDI service functions are identified by their
Eng prefix, and functions that provide access to GDI-maintained structures have names in
the form XxxOBJ_Xxx.

The following figure shows this flow of communication.

Graphics Device Interface 13

Graphics Driver and GDI Interaction

More on GDI and its usage in Win32 environment contact Virtual University Resource.

13.4 Device Context (DC)

We have studied a lot about GDI and its objects and now, we will know how to display
GDI objects using Device context.
A device context is a structure that defines a set of graphic objects and their associated
attributes, as well as the graphic modes that affect output. The graphic objects include a
pen for line drawing, a brush for painting and filling, a bitmap for copying or scrolling
parts of the screen, a palette for defining the set of available colors, a region for clipping
and other operations, and a path for painting and drawing operations. The remainder of
this section is divided into the following three areas.

Display Device Context Cache

The system maintains a cache of display device contexts that it uses for common, parent,
and window device contexts. The system retrieves a device context from the cache
whenever an application calls the GetDC or BeginPaint function; the system returns the
DC to the cache when the application subsequently calls the ReleaseDC or EndPaint
function.

There is no predetermined limit on the amount of device contexts that a cache can hold;
the system creates a new display device context for the cache if none is available. Given
this, an application can have more than five active device contexts from the cache at a
time. However, the application must continue to release these device contexts after use.
Because new display device contexts for the cache are allocated in the application's heap
space, failing to release the device contexts eventually consumes all available heap space.
The system indicates this failure by returning an error when it cannot allocate space for
the new device context. Other functions unrelated to the cache may also return errors.

Graphics Device Interface 14

Display Device Context Defaults

Upon first creating a display device context, the system assigns default values for the
attributes (that is, drawing objects, colors, and modes) that comprise the device context.
The following table shows the default values for the attributes of a display device
context.

Attribute Default value

Background color Background color setting from Control Panel (typically, white).

Background mode OPAQUE

Bitmap None

Brush WHITE_BRUSH

Brush origin (0,0)

Clipping region Entire window or client area with the update region clipped, as
appropriate. Child and pop-up windows in the client area may
also be clipped.

Palette DEFAULT_PALETTE

Current pen position (0,0)

Device origin Upper left corner of the window or the client area.

Drawing mode R2_COPYPEN

Font SYSTEM_FONT

Inter character spacing 0

Mapping mode MM_TEXT

Pen BLACK_PEN

Polygon-fill mode ALTERNATE

Stretch mode BLACKONWHITE

Text color Text color setting from Control Panel (typically, black).

Viewport extent (1,1)

Viewport origin (0,0)

Window extent (1,1)

Window origin (0,0)

An application can modify the values of the display device context attributes by using
selection and attribute functions, such as SelectObject, SetMapMode, and SetTextColor.

Graphics Device Interface 15

For example, an application can modify the default units of measure in the coordinate
system by using SetMapMode to change the mapping mode.

Changes to the attribute values of a common, parent, or window device context are not
permanent. When an application releases these device contexts, the current selections,
such as mapping mode and clipping region, are lost as the context is returned to the
cache. Changes to a class or private device context persist indefinitely. To restore them to
their original defaults, an application must explicitly set each attribute.

Common Display Device Context

A common device context is used for drawing in the client area of the window. The
system provides a common device context by default for any window whose window
class does not explicitly specify a display device context style. Common device contexts
are typically used with windows that can be drawn without extensive changes to the
device context attributes. Common device contexts are convenient because they do not
require additional memory or system resources, but they can be inconvenient if the
application must set up many attributes before using them.

The system retrieves all common device contexts from the display device context cache.

An application can retrieve a common device context immediately after the window is
created. Because the common device context is from the cache, the application must
always release the device context as soon as possible after drawing. After the common
device context is released, it is no longer valid and the application must not attempt to
draw with it. To draw again, the application must retrieve a new common device context,
and continue to retrieve and release a common device context each time it draws in the
window. If the application retrieves the device context handle by using the GetDC
function, it must use the ReleaseDC function to release the handle. Similarly, for each
BeginPaint function, the application must use a corresponding EndPaint function.

When the application retrieves the device context, the system adjusts the origin so that it
aligns with the upper left corner of the client area. It also sets the clipping region so that
output to the device context is clipped to the client area. Any output that would otherwise
appear outside the client area is clipped. If the application retrieves the common device
context by using BeginPaint, the system also includes the update region in the clipping
region to further restrict the output.

When an application releases a common device context, the system restores the default
values for the attributes of the device context. An application that modifies attribute
values must do so each time it retrieves a common device context. Releasing the device
context releases any drawing objects the application may have selected into it, so the
application need not release these objects before releasing the device context. In all cases,
an application must never assume that the common device context retains non default
selections after being released.

Graphics Device Interface 16

Private Display Device Context

A private device context enables an application to avoid retrieving and initializing a
display device context each time the application must draw in a window. Private device
contexts are useful for windows that require many changes to the values of the attributes
of the device context to prepare it for drawing. Private device contexts reduce the time
required to prepare the device context and therefore the time needed to carry out drawing
in the window.

An application directs the system to create a private device context for a window by
specifying the CS_OWNDC style in the window class. The system creates a unique
private device context each time it creates a new window belonging to the class. Initially,
the private device context has the same default values for attributes as a common device
context, but the application can modify these at any time. The system preserves changes
to the device context for the life of the window or until the application makes additional
changes.

An application can retrieve a handle to the private device context by using the GetDC
function any time after the window is created. The application must retrieve the handle
only once. Thereafter, it can keep and use the handle any number of times. Because a
private device context is not part of the display device context cache, an application need
never release the device context by using the ReleaseDC function.

The system automatically adjusts the device context to reflect changes to the window,
such as moving or sizing. This ensures that any overlapping windows are always properly
clipped; that is, no action is required by the application to ensure clipping. However, the
system does not revise the device context to include the update region. Therefore, when
processing a WM_PAINT message, the application must incorporate the update region
either by calling BeginPaint or by retrieving the update region and intersecting it with the
current clipping region. If the application does not call BeginPaint, it must explicitly
validate the update region by using the ValidateRect or ValidateRgn function. If the
application does not validate the update region, the window receives an endless series of
WM_PAINT messages.

Because BeginPaint hides the caret if a window is showing it, an application that calls
BeginPaint should also call the EndPaint function to restore the caret. EndPaint has no
other effect on a private device context.

Although a private device context is convenient to use, it is expensive in terms of system
resources, requiring 800 or more bytes to store. Private device contexts are recommended
when performance considerations outweigh storage costs.

The system includes the private device context when sending the WM_ERASEBKGND
message to the application. The current selections of the private device context, including
mapping mode, are in effect when the application or the system processes these
messages. To avoid undesirable effects, the system uses logical coordinates when erasing
the background; for example, it uses the GetClipBox function to retrieve the logical

Graphics Device Interface 17

coordinates of the area to erase and passes these coordinates to the FillRect function.
Applications that process these messages can use similar techniques. The system supplies
a window device context with the WM_ICONERASEBKGND message regardless of
whether the corresponding window has a private device context.

An application can use the GetDCEx function to force the system to return a common
device context for the window that has a private device context. This is useful for
carrying out quick touch-ups to a window without changing the current values of the
attributes of the private device context.

Class Display Device Context

By using a class device context, an application can use a single display device context for
every window belonging to a specified class. Class device contexts are often used with
control windows that are drawn using the same attribute values. Like private device
contexts, class device contexts minimize the time required to prepare a device context for
drawing.

The system supplies a class device context for a window if it belongs to a window class
having the CS_CLASSDC style. The system creates the device context when creating the
first window belonging to the class and then uses the same device context for all
subsequently created windows in the class. Initially, the class device context has the same
default values for attributes as a common device context, but the application can modify
these at any time. The system preserves all changes, except for the clipping region and
device origin, until the last window in the class has been destroyed. A change made for
one window applies to all windows in that class.

An application can retrieve the handle for the class device context by using the GetDC
function any time after the first window has been created. The application can keep and
use the handle without releasing it because the class device context is not part of the
display device context cache. If the application creates another window in the same
window class, the application must retrieve the class device context again. Retrieving the
device context sets the correct device origin and clipping region for the new window.
After the application retrieves the class device context for a new window in the class, the
device context can no longer be used to draw in the original window without again
retrieving it for that window. In general, each time it must draw in a window, an
application must explicitly retrieve the class device context for the window.

Applications that use class device contexts should always call BeginPaint when
processing a WM_PAINT message. The function sets the correct device origin and
clipping region for the window, and incorporates the update region. The application
should also call EndPaint to restore the caret if BeginPaint hide it. EndPaint has no other
effect on a class device context.

The system passes the class device context when sending the WM_ERASEBKGND
message to the application, permitting the current attribute values to affect any drawing
carried out by the application or the system when processing this message. The system

Graphics Device Interface 18

supplies a window device context with the WM_ICONERASEBKGND message
regardless of whether the corresponding window has a class device context. As it could
with a window having a private device context, an application can use GetDCEx to force
the system to return a common device context for the window that has a class device
context.

Note: Use of class device contexts is not recommended.

Window Display Device Context

A window device context enables an application to draw anywhere in a window,
including the nonclient area. Window device contexts are typically used by applications
that process the WM_NCPAINT and WM_NCACTIVATE messages for windows with
custom nonclient areas. Using a window device context is not recommended for any
other purpose.

An application can retrieve a window device context by using the GetWindowDC or
GetDCEx function with the DCX_WINDOW option specified. The function retrieves a
window device context from the display device context cache. A window that uses a
window device context must release it after drawing by using the ReleaseDC function as
soon as possible. Window device contexts are always from the cache; the CS_OWNDC
and CS_CLASSDC class styles do not affect the device context.

When an application retrieves a window device context, the system sets the device origin
to the upper left corner of the window instead of the upper left corner of the client area. It
also sets the clipping region to include the entire window, not just the client area. The
system sets the current attribute values of a window device context to the same default
values as a common device context. An application can change the attribute values, but
the system does not preserve any changes when the device context is released.

Parent Display Device Context

A parent device context enables an application to minimize the time necessary to set up
the clipping region for a window. An application typically uses parent device contexts to
speed up drawing for control windows without requiring a private or class device context.
For example, the system uses parent device contexts for push button and edit controls.
Parent device contexts are intended for use with child windows only, never with top-level
or pop-up windows.

An application can specify the CS_PARENTDC style to set the clipping region of the
child window to that of the parent window so that the child can draw in the parent.
Specifying CS_PARENTDC enhances an application's performance because the system
doesn't need to keep recalculating the visible region for each child window.

Attribute values set by the parent window are not preserved for the child window; for
example, the parent window cannot set the brush for its child windows. The only property
preserved is the clipping region. The window must clip its own output to the limits of the
window. Because the clipping region for the parent device context is identical to the

Graphics Device Interface 19

parent window, the child window can potentially draw over the entire parent window, but
the parent device context must not be used in this way.

The system ignores the CS_PARENTDC style if the parent window uses a private or
class device context, if the parent window clips its child windows, or if the child window
clips its child windows or sibling windows.

Window Update Lock

A window update lock is a temporary suspension of drawing in a window. The system
uses the lock to prevent other windows from drawing over the tracking rectangle
whenever the user moves or sizes a window. Applications can use the lock to prevent
drawing if they carry out similar moving or sizing operations with their own windows.

An application uses the LockWindowUpdate function to set or clear a window update
lock, specifying the window to lock. The lock applies to the specified window and all of
its child windows. When the lock is set, the GetDC and BeginPaint functions return a
display device context with a visible region that is empty. Given this, the application can
continue to draw in the window, but all output is clipped. The lock persists until the
application clears it by calling LockWindowUpdate, specifying NULL for the window.
Although LockWindowUpdate forces a window's visible region to be empty, the function
does not make the specified window invisible and does not clear the WS_VISIBLE style
bit.

After the lock is set, the application can use the GetDCEx function, with the
DCX_LOCKWINDOWUPDATE value, to retrieve a display device context to draw over
the locked window. This allows the application to draw a tracking rectangle when
processing keyboard or mouse messages. The system uses this method when the user
moves and sizes windows. GetDCEx retrieves the display device context from the display
device context cache, so the application must release the device context as soon as
possible after drawing.

While a window update lock is set, the system creates an accumulated bounding rectangle
for each locked window. When the lock is cleared, the system uses this bounding
rectangle to set the update region for the window and its child windows, forcing an
eventual WM_PAINT message. If the accumulated bounding rectangle is empty (that is,
if no drawing has occurred while the lock was set), the update region is not set.

Accumulated Bounding Rectangle

The accumulated bounding rectangle is the smallest rectangle enclosing the portion of a
window or client area affected by recent drawing operations. An application can use this
rectangle to conveniently determine the extent of changes caused by drawing operations.
It is sometimes used in conjunction with LockWindowUpdate to determine which portion
of the client area must be redrawn after the update lock is cleared.

An application uses the SetBoundsRect function (specifying DCB_ENABLE) to begin
accumulating the bounding rectangle. The system subsequently accumulates points for

Graphics Device Interface 20

the bounding rectangle as the application uses the specified display device context. The
application can retrieve the current bounding rectangle at any time by using the
GetBoundsRect function. The application stops the accumulation by calling
SetBoundsRect again, specifying the DCB_DISABLE value.

13.5 Steps involved in output of a text string in the client area of
the application

The following points are adopted to output a text string.

1. Get the handle to the Device Context for the window’s client area from the GDI.
2. Use the Device Context for writing / painting in the client area of the window.
3. Release the Device context.

Printing Text String (Example)

HDC hdc;

hdc = GetDC(hWnd); //Get the DC

char *str=”This is Gdi program”;

TextOut(hdc,10,10,str , strlen(str)); //output a text

ReleaseDC(hWnd,hdc); //release a DC

13.6 GetDC

The GetDC function retrieves a handle to a display device context (DC) for the client
area of a specified window or for the entire screen. You can use the returned handle in
subsequent GDI functions to draw in the DC.

hDC = GetDC(hWnd);

hWnd

Handle to the window whose DC is to be retrieved. If this value is NULL, GetDC
retrieves the DC for the entire screen.

The GetDC function retrieves a common, class, or private DC depending on the class
style of the specified window. For class and private DCs, GetDC leaves the previously
assigned attributes unchanged. However, for common DCs, GetDC assigns default
attributes to the DC each time it is retrieved. For example, the default font is System,
which is a bitmap font. Because of this, the handle for a common DC returned by GetDC

Graphics Device Interface 21

does not tell you what font, color, or brush was used when the window was drawn. To
determine the font, call GetTextFace.

Note: that the handle to the DC can only be used by a single thread at any one time.

After painting with a common DC, the ReleaseDC function must be called to release the
DC. Class and private DCs do not have to be released. ReleaseDC must be called from
the same thread that called GetDC. The number of DCs is limited only by available
memory.

13.7 TextOut

The TextOut() function writes a character string at the specified location, using the
currently selected font, background color, and text color.

BOOL TextOut(
 HDC hdc, // handle to DC
 int nXStart, // x-coordinate of starting position
 int nYStart, // y-coordinate of starting position
 LPCTSTR lpString, // character string
 int cbString // number of characters
);

hdc is a HANDLE to the device context.
nXStart: Specifies the x-coordinate, in logical coordinates, of the reference point that the
system uses to align the string.
nYStart: Specifies the y-coordinate, in logical coordinates, of the reference point that the
system uses to align the string.
lpString: Pointer to the string to be drawn. The string does not need to be zero-
terminated, since cbString specifies the length of the string.
cbString: Specifies the length of the string. For the ANSI function it is a BYTE count and
for the Unicode function it is a WORD count. Note that for the ANSI function, characters
in SBCS code pages take one byte each while most characters in DBCS code pages take
two bytes; for the Unicode function, most currently defined Unicode characters (those in
the Basic Multilingual Plane (BMP)) are one WORD while Unicode surrogates are two
WORDs.

The interpretation of the reference point depends on the current text-alignment mode. An
application can retrieve this mode by calling the GetTextAlign function; an application
can alter this mode by calling the SetTextAlign function.

By default, the current position is not used or updated by this function. However, an
application can call the SetTextAlign function with the fMode parameter set to
TA_UPDATECP to permit the system to use and update the current position each time
the application calls TextOut for a specified device context. When this flag is set, the
system ignores the nXStart and nYStart parameters on subsequent TextOut calls.

Graphics Device Interface 22

// Obtain the window's client rectangle

GetClientRect(hwnd, &r);

/* THE FIX: by setting the background mode
 to transparent, the region is the text itself */

// SetBkMode(hdc, TRANSPARENT);

// Send some text out into the world

TCHAR text[] = "You can bring horse to water, but you can not make it drink";

TextOut(hdc,r.left,r.top,text, ARRAYSIZE(text)); //ARRAYSIZE is a string length

13.8 ReleaseDC

The ReleaseDC function releases a device context (DC), freeing it for use by other
applications. The effect of the ReleaseDC function depends on the type of DC. It frees
only common and window DCs. It has no effect on class or private DCs.

int ReleaseDC(
HWND hWnd, // handle to window
HDC hDC // handle to DC
);

hWnd: Handle to the window whose DC is to be released.
hDC: Handle to the DC to be released.

The application must call the ReleaseDC function for each call to the GetWindowDC
function and for each call to the GetDC function that retrieves a common DC.

An application cannot use the ReleaseDC function to release a DC that was created by
calling the CreateDC function; instead, it must use the DeleteDC function. ReleaseDC
must be called from the same thread that called GetDC.

13.9 WM_PAINT

When a minimized window is maximized, Windows requests the application to repaint
the client area.

Windows sends a WM_PAINT message for repainting a window.

Graphics Device Interface 23

13.10 BeginPaint

Begin Paint function performs following tasks.

• The BeginPaint() function prepares the specified window for painting and fills a
PAINTSTRUCT structure with information about the painting.

• BeginPaint() first erases the background of window’s client area by sending
WM_ERASEBKGND message.

• If the function succeeds, the return value is the handle to a display device context
for the specified window.

HDC BeginPaint(
HWND hwnd, // handle to window
LPPAINTSTRUCT lpPaint // paint information
);

hwnd: Handle to the window to be repainted.
lpPaint: Pointer to the PAINTSTRUCT structure that will receive painting information.

The BeginPaint function automatically sets the clipping region of the device context to
exclude any area outside the update region. The update region is set by the InvalidateRect
or InvalidateRgn function and by the system after sizing, moving, creating, scrolling, or
any other operation that affects the client area. If the update region is marked for erasing,
BeginPaint sends a WM_ERASEBKGND message to the window.

An application should not call BeginPaint except in response to a WM_PAINT message.
Each call to BeginPaint must have a corresponding call to the EndPaint function.

If the caret is in the area to be painted, BeginPaint automatically hides the caret to
prevent it from being erased.

If the window's class has a background brush, BeginPaint uses that brush to erase the
background of the update region before returning.

13.11 EndPaint
EndPaint is used to free the system resources reserved by the BeginPaint().
This function is required for each call to the BeginPaint() function, but only after painting
is complete.

BOOL EndPaint(
 HWND hWnd, // handle to window
 CONST PAINTSTRUCT *lpPaint // paint data
);

hWnd: Handle to the window that has been repainted.
lpPaint: Pointer to a PAINTSTRUCT structure that contains the painting information
retrieved by BeginPaint.

Graphics Device Interface 24

Return Value: The return value is always nonzero.

13.12 WM_SIZING
Whenever a window is resized, system sends WM_SIZING message to the application
that owns the window.

In this message we can print a string each time when window is being sizing. The
following example shows our statement.
case WM_SIZING:

hDC = GetDC(hWnd);

char *str=”First GDI Call in WM_SIZING Message”;

TextOut(hDC, 0, 0, str, strlen(str));

ReleaseDC(hWnd, hDC);

break;

13.13 CS_HREDRAW and CS_VREDRAW

After specifying CS_HREDRAW and CS_VREDRAW, window will send WM_PAINT
message each time when window redraw either horizontally or vertically.
To send WM_PAINT message whenever a window is resized, we specify
CS_HREDRAW, CS_VREDRAW class styles in WNDCLASS structure while
registering the class.

Summary

In this lecture, we discussed window’s most important component—GDI (Graphics
device context) in detailed. GDI is very much useful for every programmer because it
gives platform independent interface. So whenever we want to write something on screen
or on printer we take a device context of that particular device either display or printer.
We used GetDC functions for getting device context of a display device or printer device
to output a graphics or text data. Printing or drawing can always be done through Device
context provided by Windows.

Whenever window needs to draw or paint in its client area it receives WM_PAINT
message.

Graphics Device Interface 25

Tips

1) GetDC provides you handle to the device context from the cache sometimes. So
be careful when using this handle and you must release device context after using
it or when it is useless. Do not try to delete device context handle because it is
shared to many applications so release it not delete it.

2) Try to perform painting in client area always in WM_PAINT message.
(recommended)

Exercises

1. Write an application that uses Private Device Context. Using that device
context, display center aligned text.

2. Before starting of above application, show a dialog box which gives

option to the user to change background brush.

Chapter 14

CHAPTER 14 1

14.1 PAINTING IN A WINDOW 2
14.1.1 WHEN TO DRAW IN A WINDOW 3
14.1.2 THE WM_PAINT MESSAGE 3
14.1.3 DRAWING WITHOUT THE WM_PAINT MESSAGE 4
14.1.4 WINDOW BACKGROUND 5
14.2 WINDOW COORDINATE SYSTEM 6
14.3 WINDOW REGIONS 7
14.4 CONDITION IN WHICH PAINT MESSAGE IS SENT (IN SHORT) 7
14.5 CONDITION IN WHICH PAINT MESSAGE MAY BE SENT 7
14.6 CONDITION IN WHICH PAINT MESSAGE NEVER SENT 7
14.7 PAINT REFERENCE 8
14.7.1 INVALIDATERECT FUNCTION 8
14.7.2 PAINTSTRUCT STRUCTURE 8
14.8 OTHER GDI TEXT OUTPUT FUNCTIONS 9
14.8.1 DRAWTEXT 9
14.8.2 TABBEDTEXTOUT 14
14.9 PRIMITIVE SHAPES 15
14.9.1 LINES 15
14.9.2 RECTANGLE 16
14.9.3 POLYGON 16
14.10 STOCK OBJECTS 16
14.10.1 GETSTOCKOBJECT FUNCTION 16
14.11 SELECTOBJECT 18
14.12 EXAMPLE 19
SUMMARY 19
EXERCISES 20

Painting and Drawing 2

14.1 Painting in a Window
The WM_PAINT message is sent when the system or another application makes a request
to paint a portion of an application's window. The message is sent by the
DispatchMessage function to a window procedure when the application obtains a
WM_PAINT message from message Queue by using the GetMessage or PeekMessage
functions.
A window receives this message through its WindowProc function.
Windows always specifies invalid area of any window in terms of a least bounding
rectangle; hence, the entire window is not repainted.

WM_PAINT message is generated by the system only when any part of application
window becomes invalid.

The WM_PAINT message is generated by the system and should not be sent by an
application.

The DefWindowProc function validates the update region. The function may also send
the WM_NCPAINT message to the window procedure if the window frame must be
painted and send the WM_ERASEBKGND message if the window background must be
erased.

The system sends this message when there are no other messages in the application's
message queue. DispatchMessage determines where to send the message; GetMessage
determines which message to dispatch. GetMessage returns the WM_PAINT message
when there are no other messages in the application's message queue, and
DispatchMessage sends the message to the appropriate window procedure.

A window may receive internal paint messages as a result of calling RedrawWindow with
the RDW_INTERNALPAINT flag set. In this case, the window may not have an update
region. An application should call the GetUpdateRect function to determine whether the
window has an update region. If GetUpdateRect returns zero, the application should not
call the BeginPaint and EndPaint functions.

An application must check for any necessary internal painting by looking at its internal
data structures for each WM_PAINT message, because a WM_PAINT message may
have been caused by both a non-NULL update region and a call to RedrawWindow with
the RDW_INTERNALPAINT flag set.

The system sends an internal WM_PAINT message only once. After an internal
WM_PAINT message is returned from GetMessage or PeekMessage or is sent to a
window by UpdateWindow, the system does not post or send further WM_PAINT
messages until the window is invalidated or until RedrawWindow is called again with the
RDW_INTERNALPAINT flag set.

Painting and Drawing 3

For some common controls, the default WM_PAINT message processing checks the
wParam parameter. If wParam is non-NULL, the control assumes that the value is an
HDC and paints using that device context.

14.1.1 When to Draw in a Window

An application draws in a window at a variety of times: when first creating a window,
when changing the size of the window, when moving the window from behind another
window, when minimizing or maximizing the window, when displaying data from an
opened file, and when scrolling, changing, or selecting a portion of the displayed data.

The system manages actions such as moving and sizing a window. If an action affects the
content of the window, the system marks the affected portion of the window as ready for
updating and, at the next opportunity, sends a WM_PAINT message to the window
procedure of the window. The message is a signal to the application to determine what
must be updated and to carry out the necessary drawing.

Some actions are managed by the application, such as displaying open files and selecting
displayed data. For these actions, an application can mark for updating the portion of the
window affected by the action, causing a WM_PAINT message to be sent at the next
opportunity. If an action requires immediate feedback, the application can draw while the
action takes place, without waiting for WM_PAINT. For example, a typical application
highlights the area the user selects rather than waiting for the next WM_PAINT message
to update the area.

In all cases, an application can draw in a window as soon as it is created. To draw in the
window, the application must first retrieve a handle to a display device context for the
window. Ideally, an application carries out most of its drawing operations during the
processing of WM_PAINT messages. In this case, the application retrieves a display
device context by calling the BeginPaint function. If an application draws at any other
time, such as from within WinMain or during the processing of keyboard or mouse
messages, it calls the GetDC or GetDCEx function to retrieve the display DC.

14.1.2 The WM_PAINT Message

Typically, an application draws in a window in response to a WM_PAINT message. The
system sends this message to a window procedure when changes to the window have
altered the content of the client area. The system sends the message only if there are no
other messages in the application message queue.

Upon receiving a WM_PAINT message, an application can call BeginPaint to retrieve
the display device context for the client area and use it in calls to GDI functions to carry
out whatever drawing operations are necessary to update the client area. After completing
the drawing operations, the application calls the EndPaint function to release the display
device context.

Painting and Drawing 4

Before BeginPaint returns the display device context, the system prepares the device
context for the specified window. It first sets the clipping region for the device context to
be equal to the intersection of the portion of the window that needs updating and the
portion that is visible to the user. Only those portions of the window that have changed
are redrawn. Attempts to draw outside this region are clipped and do not appear on the
screen.

The system can also send WM_NCPAINT and WM_ERASEBKGND messages to the
window procedure before BeginPaint returns. These messages direct the application to
draw the nonclient area and window background. The nonclient area is the part of a
window that is outside of the client area. The area includes features such as the title bar,
window menu (also known as the System menu), and scroll bars. Most applications rely
on the default window function, DefWindowProc, to draw this area and therefore pass
the WM_NCPAINT message to this function. The window background is the color or
pattern that a window is filled with before other drawing operations begin. The
background covers any images previously in the window or on the screen under the
window. If a window belongs to a window class having a class background brush, the
DefWindowProc function draws the window background automatically.

BeginPaint fills a PAINTSTRUCT structure with information such as the dimensions of
the portion of the window to be updated and a flag indicating whether the window
background has been drawn. The application can use this information to optimize
drawing. For example, it can use the dimensions of the update region, specified by the
rcPaint member, to limit drawing to only those portions of the window that need
updating. If an application has very simple output, it can ignore the update region and
draw in the entire window, relying on the system to discard (clip) any unneeded output.
Because the system clips drawing that extends outside the clipping region, only drawing
that is in the update region is visible.

BeginPaint sets the update region of a window to NULL. This clears the region,
preventing it from generating subsequent WM_PAINT messages. If an application
processes a WM_PAINT message but does not call BeginPaint or otherwise clear the
update region, the application continues to receive WM_PAINT messages as long as the
region is not empty. In all cases, an application must clear the update region before
returning from the WM_PAINT message.

After the application finishes drawing, it should call EndPaint. For most windows,
EndPaint releases the display device context, making it available to other windows.
EndPaint also shows the caret, if it was previously hidden by BeginPaint. BeginPaint
hides the caret to prevent drawing operations from corrupting it.

14.1.3 Drawing Without the WM_PAINT Message

Although applications carry out most drawing operations while the WM_PAINT
message is processing, it is sometimes more efficient for an application to draw directly
in a window without relying on the WM_PAINT message. This can be useful when the

Painting and Drawing 5

user needs immediate feedback, such as when selecting text and dragging or sizing an
object. In such cases, the application usually draws while processing keyboard or mouse
messages.

To draw in a window without using a WM_PAINT message, the application uses the
GetDC or GetDCEx function to retrieve a display device context for the window. With
the display device context, the application can draw in the window and avoid intruding
into other windows. When the application has finished drawing, it calls the ReleaseDC
function to release the display device context for use by other applications.

When drawing without using a WM_PAINT message, the application usually does not
invalidate the window. Instead, it draws in such a fashion that it can easily restore the
window and remove the drawing. For example, when the user selects text or an object,
the application typically draws the selection by inverting whatever is already in the
window. The application can remove the selection and restore the original contents of the
window by simply inverting again.

The application is responsible for carefully managing any changes it makes to the
window. In particular, if an application draws a selection and an intervening
WM_PAINT message occurs, the application must ensure that any drawing done during
the message does not corrupt the selection. To avoid this, many applications remove the
selection, carry out usual drawing operations, and then restore the selection when
drawing is complete.

14.1.4 Window Background

The window background is the color or pattern used to fill the client area before a
window begins drawing. The window background covers whatever was on the screen
before the window was moved there, erasing existing images and preventing the
application's new output from being mixed with unrelated information.

The system paints the background for a window or gives the window the opportunity to
do so by sending it a WM_ERASEBKGND message when the application calls
BeginPaint. If an application does not process the message but passes it to
DefWindowProc, the system erases the background by filling it with the pattern in the
background brush specified by the window's class. If the brush is not valid or the class
has no background brush, the system sets the fErase member in the PAINTSTRUCT
structure that BeginPaint returns, but carries out no other action. The application then
has a second chance to draw the window background, if necessary.

If it processes WM_ERASEBKGND, the application should use the message's wParam
parameter to draw the background. This parameter contains a handle to the display device
context for the window. After drawing the background, the application should return a
nonzero value. This ensures that BeginPaint does not erroneously set the fErase member
of the PAINTSTRUCT structure to a nonzero value (indicating the background should
be erased) when the application processes the subsequent WM_PAINT message.

Painting and Drawing 6

An application can define a class background brush by assigning a brush handle or a
system color value to the hbrBackground member of the WNDCLASS structure when
registering the class with the RegisterClass function. The GetStockObject or
CreateSolidBrush function can be used to create a brush handle. A system color value
can be one of those defined for the SetSysColors function. (The value must be increased
by one before it is assigned to the member.)

An application can process the WM_ERASEBKGND message even though a class
background brush is defined. This is typical in applications that enable the user to change
the window background color or pattern for a specified window without affecting other
windows in the class. In such cases, the application must not pass the message to
DefWindowProc.

It is not necessary for an application to align brushes, because the system draws the brush
using the window origin as the point of reference. Given this, the user can move the
window without affecting the alignment of pattern brushes.

14.2 Window Coordinate System

The coordinate system for a window is based on the coordinate system of the display
device. The basic unit of measure is the device unit (typically, the pixel). Points on the
screen are described by x- and y-coordinate pairs. The x-coordinates increase to the right;
y-coordinates increase from top to bottom. The origin (0,0) for the system depends on the
type of coordinates being used.

The system and applications specify the position of a window on the screen in screen
coordinates. For screen coordinates, the origin is the upper-left corner of the screen. The
full position of a window is often described by a RECT structure containing the screen
coordinates of two points that define the upper-left and lower-right corners of the
window.

The system and applications specify the position of points in a window by using client
coordinates. The origin in this case is the upper-left corner of the window or client area.
Client coordinates ensure that an application can use consistent coordinate values while
drawing in the window, regardless of the position of the window on the screen.

The dimensions of the client area are also described by a RECT structure that contains
client coordinates for the area. In all cases, the upper-left coordinate of the rectangle is
included in the window or client area, while the lower-right coordinate is excluded.
Graphics operations in a window or client area are excluded from the right and lower
edges of the enclosing rectangle.

Occasionally, applications may be required to map coordinates in one window to those of
another window. An application can map coordinates by using the MapWindowPoints
function. If one of the windows is the desktop window, the function effectively converts

Painting and Drawing 7

screen coordinates to client coordinates and vice versa; the desktop window is always
specified in screen coordinates.

14.3 Window Regions

In addition to the update region, every window has a visible region that defines the
window portion visible to the user. The system changes the visible region for the window
whenever the window changes size or whenever another window is moved such that it
obscures or exposes a portion of the window. Applications cannot change the visible
region directly, but the system automatically uses the visible region to create the clipping
region for any display device context retrieved for the window.

The clipping region determines where the system permits drawing. When the application
retrieves a display device context using the BeginPaint, GetDC, or GetDCEx function,
the system sets the clipping region for the device context to the intersection of the visible
region and the update region. Applications can change the clipping region by using
functions such as SetWindowRgn, SelectClipPath and SelectClipRgn, to further limit
drawing to a particular portion of the update area.

The WS_CLIPCHILDREN and WS_CLIPSIBLINGS styles further specify how the
system calculates the visible region for a window. If a window has one or both of these
styles, the visible region excludes any child window or sibling windows (windows having
the same parent window). Therefore, drawing that would otherwise intrude in these
windows will always be clipped.

14.4 Condition in which PAINT message is sent (briefly)
• Any hidden part of window becomes visible Window is resized (and

CS_VREDRAW, CS_HREDRAW style bits were set while registering the
window class).

• Program scrolls its window.
• InvalidateRect or InvalidateRgn is called by the application.

14.5 Condition in which PAINT message may be sent

• A dialog is dismissed.
• A drop-down menu disappears.
• A tool tip is displayed and then it hides.

14.6 Condition in which PAINT message never sent

• An icon is dragged over the window.
• The mouse cursor is moved

Painting and Drawing 8

14.7 PAINT Reference

14.7.1 InvalidateRect Function

InvalidateRect function is used to make window or part of it, invalidate.

BOOL InvalidateRect(
HWND hWnd, // handle to window
CONST RECT *lpRect, // rectangle coordinates
BOOL bErase // erase state
);

hWnd: Handle to the window whose update region has changed. If this parameter is
NULL, the system invalidates and redraws all windows, and sends the
WM_ERASEBKGND and WM_NCPAINT messages to the window procedure before
the function returns.

lpRect: Pointer to a RECT structure that contains the client coordinates of the rectangle
to be added to the update region. If this parameter is NULL, the entire client area is added
to the update region.

bErase: Specifies whether the background within the update region is to be erased when
the update region is processed. If this parameter is TRUE, the background is erased when
the BeginPaint function is called. If this parameter is FALSE, the background remains
unchanged.

Return Values: If the function succeeds, the return value is nonzero.If the function fails,
the return value is zero.

14.7.2 PAINTSTRUCT Structure

The PAINTSTRUCT structure contains information for an application. This information
can be used to paint the client area of a window owned by that application.

typedef struct tagPAINTSTRUCT {
 HDC hdc; //Handle to the Device context
 BOOL fErase; /*erase back ground of this parameter is true*/
 RECT rcPaint; /*rectangle to the invalidate region*/
 BOOL fRestore;
 BOOL fIncUpdate; //updation true/false
 BYTE rgbReserved[32]; //rgb values
} PAINTSTRUCT, *PPAINTSTRUCT;

hdc

Handle to the display DC to be used for painting.
fErase

Specifies whether the background must be erased. This value is nonzero if the
application should erase the background. The application is responsible for

Painting and Drawing 9

erasing the background if a window class is created without a background brush.
For more information, see the description of the hbrBackground member of the
WNDCLASS structure.

rcPaint
Specifies a RECT structure that specifies the upper left and lower right corners of
the rectangle in which the painting is requested, in device units relative to the
upper-left corner of the client area.

fRestore
Reserved; used internally by the system.

fIncUpdate
Reserved; used internally by the system.

rgbReserved
Reserved; used internally by the system.

14.8 Other GDI Text Output Functions

14.8.1 DrawText

The DrawText function draws formatted text in the specified rectangle. It formats the text
according to the specified method (expanding tabs, justifying characters, breaking lines,
and so forth).

int DrawText(
 HDC hDC, // handle to DC
 LPCTSTR lpString, // text to draw
 int nCount, // text length
 LPRECT lpRect, // formatting dimensions
 UINT uFormat // text-drawing options
);

hDC: Handle to the device context.

lpString: Pointer to the string that specifies the text to be drawn. If the nCount parameter
is –1, the string must be null-terminated.

If uFormat includes DT_MODIFYSTRING, the function could add up to four
additional characters to this string. The buffer containing the string should be
large enough to accommodate these extra characters.

nCount: Specifies the length of the string. For the ANSI function it is a BYTE count and
for the Unicode function it is a WORD count. Note that for the ANSI function,
characters in SBCS code pages take one byte each, while most characters in DBCS code
pages take two bytes; for the Unicode function, most currently defined Unicode
characters (those in the Basic Multilingual Plane (BMP)) are one WORD while Unicode
surrogates are two WORDs. If nCount is –1, then the lpString parameter is assumed to be
a pointer to a null-terminated string and DrawText computes the character count
automatically.

Painting and Drawing 10

lpRect: Pointer to a RECT structure that contains the rectangle (in logical coordinates)
in which the text is to be formatted.

uFormat: Specifies the method of formatting the text. This parameter can be one or more
of the following values.

Value Description
DT_BOTTOM Justifies the text to the bottom of the

rectangle. This value is used only with the
DT_SINGLELINE value.

DT_CALCRECT Determines the width and height of the
rectangle. If there are multiple lines of text,
DrawText uses the width of the rectangle
pointed to by the lpRect parameter and
extends the base of the rectangle to bound
the last line of text. If the largest word is
wider than the rectangle, the width is
expanded. If the text is less than the width
of the rectangle, the width is reduced. If
there is only one line of text, DrawText
modifies the right side of the rectangle so
that it bounds the last character in the line.
In either case, DrawText returns the height
of the formatted text but does not draw the
text.

DT_CENTER Centers text horizontally in the rectangle.
DT_EDITCONTROL Duplicates the text-displaying

characteristics of a multiline edit control.
Specifically, the average character width is
calculated in the same manner as for an
edit control, and the function does not
display a partially visible last line.

DT_END_ELLIPSIS For displayed text, if the end of a string
does not fit in the rectangle, it is truncated
and ellipses are added. If a word that is not
at the end of the string goes beyond the
limits of the rectangle, it is truncated
without ellipses.

The string is not modified unless the
DT_MODIFYSTRING flag is specified.

Compare with DT_PATH_ELLIPSIS and
DT_WORD_ELLIPSIS.

DT_EXPANDTABS Expands tab characters. The default

Painting and Drawing 11

number of characters per tab is eight. The
DT_WORD_ELLIPSIS,
DT_PATH_ELLIPSIS, and
DT_END_ELLIPSIS values cannot be
used with the DT_EXPANDTABS value.

DT_EXTERNALLEADING Includes the font external leading in line
height. Normally, external leading is not
included in the height of a line of text.

DT_HIDEPREFIX Windows 2000/XP: Ignores the
ampersand (&) prefix character in the text.
The letter that follows will not be
underlined, but other mnemonic-prefix
characters are still processed. For example:
input string: "A&bc&&d"
normal: "Abc&d"
DT_HIDEPREFIX: "Abc&d"

Compare with DT_NOPREFIX and
DT_PREFIXONLY.

DT_INTERNAL Uses the system font to calculate text
metrics.

DT_LEFT Aligns text to the left.
DT_MODIFYSTRING Modifies the specified string to match the

displayed text. This value has no effect
unless DT_END_ELLIPSIS or
DT_PATH_ELLIPSIS is specified.

DT_NOCLIP Draws without clipping. DrawText is
somewhat faster when DT_NOCLIP is
used.

DT_NOFULLWIDTHCHARBREAK Windows 98/Me, Windows 2000/XP:
Prevents a line break at a DBCS (double-
wide character string), so that the line
breaking rule is equivalent to SBCS
strings. For example, this can be used in
Korean windows, for more readability of
icon labels. This value has no effect unless
DT_WORDBREAK is specified.

DT_NOPREFIX Turns off processing of prefix characters.
Normally, DrawText interprets the
mnemonic-prefix character & as a directive
to underscore the character that follows,
and the mnemonic-prefix characters && as
a directive to print a single &. By
specifying DT_NOPREFIX, this
processing is turned off. For example,

Painting and Drawing 12

input string: "A&bc&&d"
normal: "Abc&d"
DT_NOPREFIX: "A&bc&&d"

Compare with DT_HIDEPREFIX and
DT_PREFIXONLY.

DT_PATH_ELLIPSIS For displayed text, replaces characters in
the middle of the string with ellipses so
that the result fits in the specified
rectangle. If the string contains backslash
(\) characters, DT_PATH_ELLIPSIS
preserves as much as possible of the text
after the last backslash.

The string is not modified unless the
DT_MODIFYSTRING flag is specified.

Compare with DT_END_ELLIPSIS and
DT_WORD_ELLIPSIS.

DT_PREFIXONLY Windows 2000/XP: Draws only an
underline at the position of the character
following the ampersand (&) prefix
character. Does not draw any other
characters in the string. For example,
input string: "A&bc&&d"
normal: "Abc&d"
DT_PREFIXONLY: " _ "

Compare with DT_HIDEPREFIX and
DT_NOPREFIX.

DT_RIGHT Aligns text to the right.
DT_RTLREADING Layout in right-to-left reading order for bi-

directional text when the font selected into
the hdc is a Hebrew or Arabic font. The
default reading order for all text is left-to-
right.

DT_SINGLELINE Displays text on a single line only.
Carriage returns and line feeds do not
break the line.

DT_TABSTOP Sets tab stops. Bits 15–8 (high-order byte
of the low-order word) of the uFormat
parameter specify the number of characters
for each tab. The default number of
characters per tab is eight. The
DT_CALCRECT,
DT_EXTERNALLEADING,

Painting and Drawing 13

DT_INTERNAL, DT_NOCLIP, and
DT_NOPREFIX values cannot be used
with the DT_TABSTOP value.

DT_TOP Justifies the text to the top of the rectangle.
DT_VCENTER Centers text vertically. This value is used

only with the DT_SINGLELINE value.
DT_WORDBREAK Breaks words. Lines are automatically

broken between words if a word would
extend past the edge of the rectangle
specified by the lpRect parameter. A
carriage return-line feed sequence also
breaks the line.

If this is not specified, output is on one
line.

DT_WORD_ELLIPSIS Truncates any word that does not fit in the
rectangle and adds ellipses.

Compare with DT_END_ELLIPSIS and
DT_PATH_ELLIPSIS.

Return Values: If the function succeeds, the return value is the height of the text in
logical units. If DT_VCENTER or DT_BOTTOM is specified, the return value is the
offset from

lpRect-> top to the bottom of the drawn text

If the function fails, the return value is zero.

The DrawText function uses the device context's selected font, text color, and
background color to draw the text. Unless the DT_NOCLIP format is used, DrawText
clips the text so that it does not appear outside the specified rectangle. Note that text with
significant overhang may be clipped, for example, an initial "W" in the text string or text
that is in italics. All formatting is assumed to have multiple lines unless the
DT_SINGLELINE format is specified.

If the selected font is too large for the specified rectangle, the DrawText function does
not attempt to substitute a smaller font.

The DrawText function supports only fonts whose escapement and orientation are both
zero.

The text alignment mode for the device context must include the TA_LEFT, TA_TOP,
and TA_NOUPDATECP flags.

Painting and Drawing 14

14.8.2 TabbedTextOut

The TabbedTextOut function writes a character string at a specified location, expanding
tabs to the values specified in an array of tab-stop positions. Text is written in the
currently selected font, background color, and text color.

LONG TabbedTextOut(
 HDC hDC, // handle to DC
 int X, // x-coord of start
 int Y, // y-coord of start
 LPCTSTR lpString, // character string
 int nCount, // number of characters
 int nTabPositions, // number of tabs in array
 CONST LPINT lpnTabStopPositions, // array of tab positions
 int nTabOrigin // start of tab expansion
);

hDC: Handle to the device context.

X: Specifies the x-coordinate of the starting point of the string, in logical units.

Y: Specifies the y-coordinate of the starting point of the string, in logical units.

lpString: Pointer to the character string to draw. The string does not need to be zero-
terminated, since nCount specifies the length of the string.

nCount: Specifies the length of the string pointed to by lpString. For the ANSI function it
is a BYTE count and for the Unicode function it is a WORD count. Note that for the
ANSI function, characters in SBCS code pages take one byte each, while most characters
in DBCS code pages take two bytes; for the Unicode function, most currently defined
Unicode characters (those in the Basic Multilingual Plane (BMP)) are one WORD while
Unicode surrogates are two WORDs.

nTabPositions: Specifies the number of values in the array of tab-stop positions.

lpnTabStopPositions: Pointer to an array containing the tab-stop positions, in logical
units. The tab stops must be sorted in increasing order; the smallest x-value should be the
first item in the array.

nTabOrigin: Specifies the x-coordinate of the starting position from which tabs are
expanded, in logical units.

Return Values: If the function succeeds, the return value is the dimensions, in logical
units, of the string. The height is in the high-order word and the width is in the low-order
word.

If the function fails, the return value is zero.

Painting and Drawing 15

If the nTabPositions parameter is zero and the lpnTabStopPositions parameter is NULL,
tabs are expanded to eight times the average character width.

If nTabPositions is 1, the tab stops are separated by the distance specified by the first
value in the lpnTabStopPositions array.

If the lpnTabStopPositions array contains more than one value, a tab stop is set for each
value in the array, up to the number specified by nTabPositions.

The nTabOrigin parameter allows an application to call the TabbedTextOut function
several times for a single line. If the application calls TabbedTextOut more than once
with the nTabOrigin set to the same value each time, the function expands all tabs
relative to the position specified by nTabOrigin.

By default, the current position is not used or updated by the TabbedTextOut function.
If an application needs to update the current position when it calls TabbedTextOut, the
application can call the SetTextAlign function with the wFlags parameter set to
TA_UPDATECP. When this flag is set, the system ignores the X and Y parameters on
subsequent calls to the TabbedTextOut function, using the current position instead.

14.9 Primitive Shapes
Primitive shapes include: Lines and Curves, filled shapes like:

Ellipse, Chord, Pie, Polygon, Rectangles

14.9.1 Lines
Line can be drawn using MoveToEx and LineTo Function.
MoveToEx function moves the points at specified location.

Note: MoveToEx effects all drawing functions.

The LineTo function draws a line from the current position up to, but not including, the
specified point.

BOOL LineTo(
 HDC hdc, // device context handle
 int nXEnd, // x-coordinate of ending point
 int nYEnd // y-coordinate of ending point
);

hdc: Handle to a device context.
nXEnd: Specifies the x-coordinate, in logical units, of the line's ending point.
nYEnd: Specifies the y-coordinate, in logical units, of the line's ending point.

Return Values: If the function succeeds, the return value is nonzero. If the function fails,
the return value is zero.

Painting and Drawing 16

14.9.2 Rectangle

• The Rectangle() function draws a rectangle. The rectangle is outlined by using the
current pen and filled by using the current brush.

• The rectangle is outlined using currently selected pen and filled using the

currently selected brush of n the window's device context.

BOOL Rectangle(
HDC hdc, // handle to DC
int nLeftRect, // x-coord of upper-left corner of rectangle
int nTopRect, // y-coord of upper-left corner of rectangle
int nRightRect, // x-coord of lower-right corner of rectangle
int nBottomRect // y-coord of lower-right corner of rectangle
);

14.9.3 Polygon
The Polygon() function draws a polygon consisting of two or more vertices connected by
straight lines. The polygon is outlined by using the current pen and filled by using the
current brush and polygon fill mode.

BOOL Polygon(
HDC hdc, // handle to DC
CONST POINT *lpPoints, // polygon vertices
int Count // count of polygon vertices
);

14.10 Stock Objects

Pre-defined GDI objects in Windows are:

• Pens
• Brushes
• Fonts
• Palettes

14.10.1 GetStockObject Function

The GetStockObject function retrieves a handle to one of the stock pens, brushes, fonts,
or palettes.

HGDIOBJ GetStockObject(
 int fnObject // stock object type
);

Painting and Drawing 17

fnObject: Specifies the type of stock object. This parameter can be one of the following
values.

Value Meaning
BLACK_BRUSH Black brush.
DKGRAY_BRUSH Dark gray brush.
DC_BRUSH Windows 2000/XP: Solid color brush. The default

color is white. The color can be changed by using
the SetDCBrushColor function. For more
information, see the Remarks section.

GRAY_BRUSH Gray brush.
HOLLOW_BRUSH Hollow brush (equivalent to NULL_BRUSH).
LTGRAY_BRUSH Light gray brush.
NULL_BRUSH Null brush (equivalent to HOLLOW_BRUSH).
WHITE_BRUSH White brush.
BLACK_PEN Black pen.
DC_PEN Windows 2000/XP: Solid pen color. The default

color is white. The color can be changed by using
the SetDCPenColor function. For more
information, see the Remarks section.

WHITE_PEN White pen.
ANSI_FIXED_FONT Windows fixed-pitch (monospace) system font.
ANSI_VAR_FONT Windows variable-pitch (proportional space)

system font.
DEVICE_DEFAULT_FONT Windows NT/2000/XP: Device-dependent font.
DEFAULT_GUI_FONT Default font for user interface objects such as

menus and dialog boxes. This is MS Sans Serif.
Compare this with SYSTEM_FONT.

OEM_FIXED_FONT Original equipment manufacturer (OEM) dependent
fixed-pitch (monospace) font.

SYSTEM_FONT System font. By default, the system uses the system
font to draw menus, dialog box controls, and text.

Windows 95/98 and Windows NT: The system
font is MS Sans Serif.

Windows 2000/XP: The system font is Tahoma
SYSTEM_FIXED_FONT Fixed-pitch (monospace) system font. This stock

object is provided only for compatibility with 16-bit
Windows versions earlier than 3.0.

DEFAULT_PALETTE Default palette. This palette consists of the static
colors in the system palette.

Painting and Drawing 18

Return Values: If the function succeeds, the return value is a handle to the requested
logical object. If the function fails, the return value is NULL.

Use the DKGRAY_BRUSH, GRAY_BRUSH, and LTGRAY_BRUSH stock objects
only in windows with the CS_HREDRAW and CS_VREDRAW styles. Using a gray
stock brush in any other style of window can lead to misalignment of brush patterns after
a window is moved or sized. The origins of stock brushes cannot be adjusted.

The HOLLOW_BRUSH and NULL_BRUSH stock objects are equivalent.

The font used by the DEFAULT_GUI_FONT stock object could change. Use this stock
object when you want to use the font that menus, dialog boxes, and other user interface
objects use.

14.11 SelectObject

The SelectObject function selects an object into the specified device context (DC). The
new object replaces the previous object of the same type.

HGDIOBJ SelectObject(
 HDC hdc, // handle to DC
 HGDIOBJ hgdiobj // handle to object
);

hdc: Handle to the DC.
Hgdiobj: Handle to the object to be selected. The specified object must have been created
by using one of the following functions.

Object Functions
Bitmap Created by any bitmap function like CreateBitmap,

CreateCompatibleBitmap and CreateDIBSection etc.

(Bitmaps can be selected for memory DCs only, and for only one DC
at a time.)

Brush Created by CreateBrushIndirect or CreateSolidBrush
Font Created by CreateFont function
Pen Created by CreatePen
Region Created by any region function e.g. CreatePolygonRgn,

CreateRectRgn, CreateRectRgnIndirect

Return Values: If the selected object is not a region and the function succeeds, the return
value is a handle to the object being replaced.

If an error occurs and the selected object is not a region, the return value is
NULL. Otherwise, it is HGDI_ERROR.

Painting and Drawing 19

This function returns the previously selected object of the specified type. An application
should always replace a new object with the original, default object after it has finished
drawing with the new object.

An application cannot select a bitmap into more than one DC at a time.

14.12 Example

SelectObject(hdc,GetStockObject(DC_PEN));
SetDCPenColor(hdc,RGB(00,0xff,00);
Rectangle(0,0,20,20);
SetDCPenColor(hdc,RGB(00,00,0xff));
Rectangle(0,0,20,20)

/* The brush color can be changed in a similar manner. SetDCPenColor
 and SetDCBrushColor can be used interchangeably with GetStockObject
 to change the current color.
*/

SelectObject(hDC,GetStockObject(DC_BRUSH));
SetDCBrushColor(hDC,0x0)

// Provides the same flexibility as:

SelectObject(hDC,GetStockOBject(BLACK_BRUSH));

// It is not necessary to call DeleteObject to delete stock objects.

Summary
 In this lecture, we studied about painting in windows, for painting we used an
important message i.e. WM_PAINT. This message is always sent when windows need to
paint its portion or region that was previously invalidated. Windows paint only its region
when it become invalidates otherwise it is not sent WM_PAINT message. In some cases,
WM_PAINT messages are not sent—when menu drops down or small dialog boxes
appear. We also studied about invalidation and validation of a region. If region is
invalidated then it will be receiving WM_PAINT messages until it become validate.
At the end of the lecture we studied about sending and posting of messages. Messages
can be sent to windows procedure directly or it can be posted to message queue. All the
sent messages are not returned until the message is processed but the posted messages are
returned after posting the message in queue.

Tips
 All GDI Objects create handles, these handles can be of bitmaps, regions, or fonts
handle. These handles must be deleted after using these objects. Keep it in mind and
make a practice to delete all the objects when they are left unused.

Painting and Drawing 20

Exercises
1. Create a round rectangular region and paint it using your own created

hatched brush. Also write the text which should be clipped to the region.
2. On pressing the mouse left button in region, region must show message

box, bearing text you have pressed mouse in region.

Chapter 15

15.1 Z-ORDER 2
15.2 WINDOWS REVIEW 2
15.2.1 CREATEWINDOW 2
15.2.2 CHILD WINDOWS 2
15.2.3 WINDOW PROCEDURE 3
15.2.4 NOTIFICATION CODE 3
15.2.5 WM_COMMAND NOTIFICATION CODE 3
15.3 EXAMPLE APPLICATION 3
15.3.1 DESCRIPTION 3
15.3.2 OBJECTIVES 4
15.3.3 WINDOWS MANAGEMENT FUNCTIONS 4
15.3.4 WINDOW CLASSES 5
15.3.4.1 Main Window class 5
15.3.4.2 Popup Window class 5
15.3.4.3 System Window classes 5
15.3.5 CREATING MAIN WINDOWS 5
15.3.6 CREATING CHILD WINDOWS 6
15.3.7 USER DEFINED MESSAGES 7
15.3.8 APPLICATION’S MAIN WINDOW PROCEDURE 7
15.3.8.1 Drawing in Popup Window- I 8
15.3.8.2 Drawing in Popup Window- II 8
15.3.8.3 Drawing in Popup Window- III 8
15.3.9 INFORMING BACK TO MAIN WINDOW 9
15.3.10 QUIT APPLICATION VIA CONTROL IN POPUP WINDOW 9

SUMMARY 10

EXERCISES 10

Windows Management 2

15.1 Z-Order

• The Z order of a window indicates the window's position in a stack of overlapping
windows. This window stack is oriented along an imaginary axis, the z-axis,
extending outward from the screen.

• The window at the top of the Z order overlaps all other windows.
• The window at the bottom of the Z order is overlapped by all other windows.

15.2 Windows Review

15.2.1 CreateWindow
CreateWindow function have been discussing in our previous lectures. Much of its details
including styles, class name, parent handles, instance handle and coordinates, etc have
been discussed in chapter 11.
CreateWindow Function is used to create window. CreateWindow function can create
parent, child, popup and overlapped windows with dimensions x, y, width and height.

HWND CreateWindow
(
LPCTSTR lpClassName, // registered class name
LPCTSTR lpWindowName, // window name
DWORD dwStyle, // window style
int x, // horizontal position of window
int y, // vertical position of window
int nWidth, // window width
int nHeight, // window height
HWND hWndParent, // handle to parent or owner window
HMENU hMenu, // menu handle or child identifier
HINSTANCE hInstance, // handle to application instance
LPVOID lpParam // window-creation data
);

15.2.2 Child Windows

Following are the characteristics of child windows.

• A child window always appears within the client area of its parent window.
• Child windows are most often as controls.
• A child window sends WM_COMMAND notification messages to its parent

window.

Windows Management 3

• When a child window is created a unique identifier for that window is specified in
hMenu parameter of CreateWindow()

15.2.3 Window Procedure

LRESULT CALLBACK WindowProc
(

HWND hwnd, // handle to window
UINT uMsg, // WM_COMMAND
WPARAM wParam, // notification code and identifier
LPARAM lParam // handle to control (HWND)

);

15.2.4 Notification code

Common controls are normally taken as child windows that send notification messages to
the parent window when events, such as input from the user, occur in the control. The
application relies on these notification messages to determine what action the user wants
it to take. Except for trackbars, which use the WM_HSCROLL and WM_VSCROLL
messages to notify their parent of changes, common controls send notification messages
as WM_NOTIFY messages.

15.2.5 WM_COMMAND Notification code

• The wParam parameter of Window Procedure contains the notification code and
control identifier.

• low word: ID of the control n high word: notification code
• BUTTON BN_CLICKED
• EDIT EN_CHANGE etc

15.3 Example Application

For demonstration purpose we are going to create an example application.

15.3.1 Description
Our application will be parent-child window application. This application will consist of
three push buttons of names:

• RECTANGLE
• CIRCLE
• MESSAGE”

Windows Management 4

And Edit child window or edit control in its client area.
Floating popup window with caption bar and one push button bearing a name”QUIT
APPLICATION”.

15.3.2 Objectives

• Parent-child communication
• Message Routing
• Use of GDI function calls

15.3.3 Windows Management Functions
Building our application, we will use following windows management functions in our
application.

Windows management function - I

HWND GetParent
(

HWND hWnd // handle to child window
);

GetParent function returns the parent handle of the specified child. This function will be
useful when the parent of the child window to use.

Windows management function - II

HWND GetDlgItem
(

HWND hDlg, // handle to dialog box
int nIDDlgItem // control identifier

);

GetDlgItem function returns the handle of a dialog item. Using this function we can
easily get the handle of the edit control, displayed on dialog box.

HWND FindWindow
(

LPCTSTR lpClassName, // class name
LPCTSTR lpWindowName // window name

);

FindWindow function finds the window with the given class name or window name.

Windows Management 5

15.3.4 Window classes

The Window classes used in this application are:

• mainWindowClass
• popupWindowClass
• System Window Classes

15.3.4.1 Main Window class

wc.lpfnWndProc = mainWindowProc;
wc.hInstance = hAppInstance = hInstance;
wc.hCursor = LoadCursor(NULL, IDC_UPARROW);
wc.hbrBackground= (HBRUSH)GetStockObject (GRAY_BRUSH);
wc.lpszClassName= "MainWindowClass";

if(!RegisterClass(&wc))
{
 return 0;
}

15.3.4.2 Popup Window class

wc .lpfnWndProc = popupWindowProc;
wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
wc.hCursor = LoadCursor(NULL, IDC_HELP);
wc.lpszClassName = "PopupWindowClass";

if(!RegisterClass(&wc))
{
 return 0;
}

15.3.4.3 System Window classes
System window classes are pre-registered. They do not need to register in our
application. In this application, we will only used to create them not to register them.

15.3.5 Creating Main Windows

Create a Main Window of the Application.

hWndMain = CreateWindow("MainWindowClass",
"Virtual University",

Windows Management 6

WS_OVERLAPPEDWINDOW | WS_VISIBLE,
100, 100, 400, 300,
NULL, NULL, hInstance, NULL
);

// check the returned handle, don’t need to proceed if the returned handle is NULL
if(!hWnd)
{
 MessageBox(NULL,”Cannot Create Main Window”,”Error”,
MB_ICONHAND|MB_OK);
 return 0;
}

Now create a popup window with caption and visible style bit on.

hWndPopup = CreateWindow("PopupWindowClass", //window name (optional)
"Popup Window", //class name
WS_POPUP | WS_CAPTION | WS_VISIBLE,
250, 250, 300, 250,
hWndMain, NULL, hInstance, NULL
);

15.3.6 Creating Child Windows

Create a button window bearing a text “Rectangle”.

hWndButton=CreateWindow("BUTTON",
"Rectangle",
WS_CHILD | WS_VISIBLE,
10, 10, 100, 50,
hWndMain, 5,
hInstance, NULL
);

Create an Edit Window bearing a text “Message”

CreateWindow("EDIT",
"Message",
WS_CHILD | WS_VISIBLE n | ES_LOWERCASE,
10, 190, 200, 25,
hWndMain, 8,
hInstance, NULL
);

Windows Management 7

15.3.7 User defined Messages

System defined messages are already defined in WINUSER.H

#define WM_LBUTTONDOWN 0x0201 (513)
#define WM_DESTROY 0x0002 (2)
#define WM_QUIT 0x0012 (18)
#define WM_USER 0x0400 (1024)
These message are already defined, user don’t need to define them again.

Here, we will define our own messages.

#define WM_DRAW_FIGURE WM_USER+786
//user defined message are in valid range, in our case it is WM_USER + 786

15.3.8 Application’s Main Window Procedure
Message send to main window will be received and processed in mainWndProc function.
In windows procedure we will process WM_COMMAND message. In
WM_COMMAND message we check the LOWORD and HIWORD parameters of the
messages. In LOWORD we have the control ID, always and in HIWORD we have
notification code. Using control id we identify a window.

case WM_COMMAND:

wControlID = LOWORD(wParam);
wNotificationCode = HIWORD(wParam);
if(wNotificationCode == BN_CLICKED)
{

switch(wControlID)
{
case 5:
SendMessage(hWndPopup, WM_DRAW_FIGURE, RECTANGLE, 0);
break;
case 6:
SendMessage(hWndPopup, WM_DRAW_FIGURE, CIRCLE, 0); break;
case 7: SendMessage(hWndPopup, WM_DRAW_FIGURE,
TEXT_MESSAGE, 0); break;

 }

Windows Management 8

15.3.8.1 Drawing in Popup Window- I

here we check the button if button rectangle is pressed then draw a rectangle with Light
Gray stock brush.

case WM_DRAW_FIGURE:

hDC = GetDC(hWndPopup);
switch(wParam)
{

case RECTANGLE:
SelectObject(hDC,GetStockObject(
LTGRAY_BRUSH));
Rectangle(hDC, 50, 10, 230, 150);
break;

}

15.3.8.2 Drawing in Popup Window- II

In case of Circle, we create hatch brush, we created a hatch brush which has a style of
diagonal cross lines. After creating a hatch brush we select it on device context to draw a
figure. After drawing, brush must be deleted.

case CIRCLE:

hBrush = CreateHatchBrush(HS_DIAGCROSS, RGB(170, 150, 180));
SelectObject(hDC, hBrush);
Ellipse(hDC, 70, 10, 210, 150);
DeleteObject(hBrush);
break;

15.3.8.3 Drawing in Popup Window- III

By pressing the button a text must be display with the stock object Ansi variable fonts
and background brush. Text are displayed using TextOut GDI function.

case TEXT_MESSAGE:
{

TextOut(hDC, 50, 100, "Virtual University", 18);
SelectObject(hDC, GetStockObject(
ANSI_VAR_FONT));
SetBkColor(hDC, RGB(10, 255, 20));
TextOut(hDC, 50, 115, "knowledge Beyond Boundaries", 27);
break;

}

Windows Management 9

ReleaseDC(hWndPopup, hDC);

15.3.9 Informing back to Main Window

case WM_DRAW_FIGURE:

hDC = GetDC(hWndPopup);
hwndEdit = GetDlgItem(GetParent(hWnd), 8);

switch(wParam)
{
case RECTANGLE:
SelectObject(hDC,GetStockObject(LTGRAY_BRUSH));
Rectangle(hDC, 50, 10, 230, 150);
SendMessage(hwndEdit, WM_SETTEXT, 0, "Rectangle DrAwN!");
break;
}

15.3.10 Quit Application via control in Popup window

Main window is destroyed through button’s notification message BN_CLICKED. Main
Window can be destroyed using DestroyWindow Function.

WM_CREATE:
CreateWindow("BUTTON",
"Quit Application",
WS_CHILD | WS_VISIBLE, n 75, 155, 150, 40, hWnd, 1234,
hAppInstance, NULL);
break;

case WM_COMMAND:
wControlID = LOWORD(wParam);
wNotificationCode = HIWORD(wParam);
if(wNotificationCode == BN_CLICKED)
{
switch(wControlID)
{
case 1234:
DestroyWindow(GetParent(hWnd));
break;
}

}

Windows Management 10

Summary
 This chapter uses Windows management functions whose details have been
discussed in our previous lectures. These functions are very helpful to interact with
windows and hierarchy of windows and also with windows handling, windows
manipulation and windows management. Our main objective in this application was to
create a full fledge application. Before continue, we overviewed all the functions that we
had to use. Function includes GetParent, GetDlgItem, CreateWindow and notification
codes that are sent to window by controls or other child windows. Controls are normally
considered are child windows, because these can be placed in any windows and become
the part of the window but controls can be main window. Notification messages are
considered to transfer informations to parent window by child windows. Child windows
can send notification message to parent windows which aim only to inform about some
events to parent window. The notification events could be e.g. in case of edit control is
selection change i.e. EN_SELCHANGE or EN_CLICKED in case of button. Finally we
wrote a code for our application. This code displays a window and three child windows
including button that contains text like rectangle, messages etc. we also make a popup
window, popup window is not a child window. Popup windows are very useful when to
show message on screen or working in full screen modes in Microsoft Windows
Operating systems.

Exercises
1. Create a full screen popup window and then create another popup window with a

caption box, system menu and with no close style.
2. Create your own status bar and show it in a window at its proper location. This

status bar should display current time.

Chapter 16

16.1 KEYBOARD 2
16.1.1 KEYBOARD INPUT MODEL 2
16.1.2 KEYBOARD FOCUS AND ACTIVATION 3
16.1.3 KEYSTROKE MESSAGES 3
16.1.3.1 SYSTEM AND NON SYSTEM KEYSTROKES 4
16.1.3.2 VIRTUAL KEY CODES DESCRIBED 4
16.1.3.3 KEYSTROKE MESSAGE FLAGS 5
Repeat Count 5
Scan Code 6
Extended-Key Flag 6
Context Code 6
Previous Key-State Flag 6
Transition-State Flag 6
16.1.4 CHARACTER MESSAGES 6
16.1.4.1 NON-SYSTEM CHARACTER MESSAGES 7
16.1.4.2 DEAD-CHARACTER MESSAGES 7
16.1.5 KEY STATUS 8
16.1.6 KEY STROKE AND CHARACTER TRANSLATIONS 8
16.1.7 HOT-KEY SUPPORT 8
16.1.8 LANGUAGES, LOCALS, AND KEYBOARD LAYOUTS 9
16.1.9 KEYBOARD MESSAGES (BRIEF) 10
16.1.10 KEY DOWN MESSAGE FORMAT 11
16.1.11 CHARACTER MESSAGE FORMAT 11
16.1.12 GETTING KEY STATE 12
16.1.13 CHARACTER MESSAGE PROCESSING 12
16.2 CARET 12
16.2.1 CARET VISIBILITY 13
16.2.2 CARET BLINK TIME 13
16.2.3 CARET POSITION 13
16.2.4 REMOVING A CARET 14
16.2.5 CARET FUNCTIONS 14
16.3 MOUSE 14
16.3.1 MOUSE CURSOR 14
16.3.2 MOUSE CAPTURE 15
16.3.3 MOUSE CONFIGURATION 15
16.3.4 MOUSE MESSAGES 16
16.3.4.1 CLIENT AREA MOUSE MESSAGES 16
MESSAGE PARAMETERS 17
DOUBLE CLICK MESSAGES 17
16.3.4.2 NON CLIENT AREA MOUSE MESSAGES 18
16.3.4.3 THE WM_NCHITTEST MESSAGE 19
16.3.5 SCREEN AND CLIENT AREA COORDINATES 20
SUMMARY 21
EXERCISES 21

Input Devices 2

16.1 Keyboard

Keyboard is an external device in computer. Keyboard is used to input data in computer
system. An application receives keyboard input in the form of messages posted to its
windows.

16.1.1 Keyboard Input Model

The system provides device-independent keyboard support for applications by installing a
keyboard device driver appropriate for the current keyboard. The system provides
language-independent keyboard support by using the language-specific keyboard layout
currently selected by the user or the application. The keyboard device driver receives
scan codes from the keyboard, which are sent to the keyboard layout where they are
translated into messages and posted to the appropriate windows in your application.

Assigned to each key on a keyboard is a unique value called a scan code; it is a device-
dependent identifier for the key on the keyboard. A keyboard generates two scan codes
when the user types a key—one when the user presses the key and another when the user
releases the key.

The keyboard device driver interprets a scan code and translates (maps) it to a virtual-key
code; virtual-key code is a device-independent value defined by the system that identifies
the purpose of a key. After translating a scan code, the keyboard layout creates a message
that includes the scan code, the virtual-key code, and other information about the
keystroke, and then places the message in the system message queue. The system
removes the message from the system message queue and posts it to the message queue
of the appropriate thread. Eventually, the thread's message loop removes the message and
passes it to the appropriate window procedure for processing. The following figure
illustrates the keyboard input model.

Figure 1

Input Devices 3

16.1.2 Keyboard Focus and Activation

The system posts keyboard messages to the message queue of the foreground thread that
created the window with the keyboard focus. The keyboard focus is a temporary property
of a window. The system shares the keyboard with all windows on the display by shifting
the keyboard focus, at the user's direction, from one window to another. The window that
has the keyboard focus receives (from the message queue of the thread that created it) all
keyboard messages until the focus changes to a different window.

A thread can call the GetFocus function to determine which of its windows (if any)
currently has the keyboard focus. A thread can give the keyboard focus to one of its
windows by calling the SetFocus function. When the keyboard focus changes from one
window to another, the system sends a WM_KILLFOCUS message to the window that
has lost the focus, and then sends a WM_SETFOCUS message to the window that has
gained the focus.

The concept of keyboard focus is related to that of the active window. The active window
is the top-level window the user is currently working with. The window with the
keyboard focus is either the active window, or a child window of the active window. To
help the user identify the active window, the system places it at the top of the Z order and
highlights its title bar (if it has one) and border.

The user can activate a top-level window by clicking it, selecting it using the ALT+TAB
or ALT+ESC key combination, or selecting it from the Task List. A thread can activate a
top-level window by using the SetActiveWindow function. It can determine whether a
top-level window it created is active by using the GetActiveWindow function.

When one window is deactivated and another activated, the system sends the
WM_ACTIVATE message. The low-order word of the wParam parameter is zero if the
window is being deactivated and nonzero if it is being activated. When the default
window procedure receives the WM_ACTIVATE message, it sets the keyboard focus to
the active window.

To block keyboard and mouse input events from reaching applications, use BlockInput.
Note. the BlockInput function will not interfere with the asynchronous keyboard input-
state table. This means that calling the SendInput function while input is blocked will
change the asynchronous keyboard input-state table.

16.1.3 Keystroke Messages

Pressing a key causes a WM_KEYDOWN or WM_SYSKEYDOWN message to be
placed in the thread message queue attached to the window that has the keyboard focus.
Releasing a key causes a WM_KEYUP or WM_SYSKEYUP message to be placed in the
queue.

Key-up and key-down messages typically occur in pairs, but if the user holds down a key
long enough to start the keyboard's automatic repeat feature, the system generates a

Input Devices 4

number of WM_KEYDOWN or WM_SYSKEYDOWN messages in a row. It then
generates a single WM_KEYUP or WM_SYSKEYUP message when the user releases
the key.

16.1.3.1 System and non system keystrokes

The system makes a distinction between system keystrokes and nonsystem keystrokes.
System keystrokes produce system keystroke messages, WM_SYSKEYDOWN and
WM_SYSKEYUP. Nonsystem keystrokes produce nonsystem keystroke messages,
WM_KEYDOWN and WM_KEYUP.

If your window procedure must process a system keystroke message, make sure that after
processing the message, the procedure passes it to the DefWindowProc function.
Otherwise, all system operations involving the ALT key will be disabled whenever the
window has the keyboard focus, that is, the user won't be able to access the window's
menus or System menu, or use the ALT+ESC or ALT+TAB key combination to activate
a different window.

System keystroke messages are primarily used by the system rather than by an
application. The system uses them to provide its built-in keyboard interface to menus and
to allow the user to control which window is active. System keystroke messages are
generated when the user types a key in combination with the ALT key, or when the user
types and no window has the keyboard focus (for example, when the active application is
minimized). In this case, the messages are posted to the message queue attached to the
active window.

Nonsystem keystroke messages are used by application windows; the DefWindowProc
function does nothing with them. A window procedure can discard any nonsystem
keystroke messages that it does not need.

16.1.3.2 Virtual key codes Described

The wParam parameter of a keystroke message contains the virtual-key code of the key
that was pressed or released. A window procedure processes or ignores a keystroke
message, depending on the value of the virtual-key code.

A typical window procedure processes only a small subset of the keystroke messages that
it receives and ignores the rest. For example, a window procedure might process only
WM_KEYDOWN keystroke messages, and only those that contain virtual-key codes for
the cursor movement keys, shift keys (also called control keys), and function keys. A
typical window procedure does not process keystroke messages from character keys.
Instead, it uses the TranslateMessage function to convert the message into character
messages.

Input Devices 5

16.1.3.3 Keystroke Message Flags

The lParam parameter of a keystroke message contains additional information about the
keystroke that generated the message. This information includes the repeat count, the
scan code, the extended-key flag, the context code, the previous key-state flag, and the
transition-state flag. The following illustration shows the locations of these flags and
values in the lParam parameter.

Figure 2

An application can use the following values to manipulate the keystroke flags.

KF_ALTDOWN Manipulates the ALT key flag, which indicated if the ALT key is
pressed.

KF_DLGMODE Manipulates the dialog mode flag, which indicates whether a dialog
box is active.

KF_EXTENDED Manipulates the extended key flag.

KF_MENUMODE Manipulates the menu mode flag, which indicates whether a menu is
active.

KF_REPEAT Manipulates the repeat count.
KF_UP Manipulates the transition state flag.

Repeat Count

You can check the repeat count to determine whether a keystroke message represents
more than one keystroke. The system increments the count when the keyboard generates
WM_KEYDOWN or WM_SYSKEYDOWN messages faster than an application can
process them. This often occurs when the user holds down a key long enough to start the
keyboard's automatic repeat feature. Instead of filling the system message queue with the
resulting key-down messages, the system combines the messages into a single key down
message and increments the repeat count. Releasing a key cannot start the automatic
repeat feature, so the repeat count for WM_KEYUP and WM_SYSKEYUP messages is
always set to 1.

Input Devices 6

Scan Code

The scan code is the value that the keyboard hardware generates when the user presses a
key. It is a device-dependent value that identifies the key pressed, as opposed to the
character represented by the key. An application typically ignores scan codes. Instead, it
uses the device-independent virtual-key codes to interpret keystroke messages.

Extended-Key Flag

The extended-key flag indicates whether the keystroke message originated from one of
the additional keys on the enhanced keyboard. The extended keys consist of the ALT and
CTRL keys on the right-hand side of the keyboard; the INS, DEL, HOME, END, PAGE
UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric keypad; the
NUM LOCK key, the BREAK (CTRL+PAUSE) key, the PRINT SCRN key, and the
divide (/) and ENTER keys in the numeric keypad. The extended-key flag is set if the key
is an extended key.

Context Code

The context code indicates whether the ALT key was down when the keystroke message
was generated. The code is 1 if the ALT key was down and 0 if it was up.

Previous Key-State Flag

The previous key-state flag indicates whether the key that generated the keystroke
message was previously up or down. It is 1 if the key was previously down and 0 if the
key was previously up. You can use this flag to identify keystroke messages generated by
the keyboard's automatic repeat feature. This flag is set to 1 for WM_KEYDOWN and
WM_SYSKEYDOWN keystroke messages generated by the automatic repeat feature. It
is always set to 0 for WM_KEYUP and WM_SYSKEYUP messages.

Transition-State Flag

The transition-state flag indicates whether pressing a key or releasing a key generated the
keystroke message. This flag is always set to 0 for WM_KEYDOWN and
WM_SYSKEYDOWN messages; it is always set to 1 for WM_KEYUP and
WM_SYSKEYUP messages.

16.1.4 Character Messages

Keystroke messages provide a lot of information about keystrokes, but they don't provide
character codes for character keystrokes. To retrieve character codes, an application must
include the TranslateMessage function in its thread message loop. TranslateMessage
passes a WM_KEYDOWN or WM_SYSKEYDOWN message to the keyboard layout.
The layout examines the message's virtual-key code and, if it corresponds to a character
key, it provides the character code equivalent (taking into account the state of the SHIFT

Input Devices 7

and CAPS LOCK keys). It then generates a character message that includes the character
code and places the message at the top of the message queue. The next iteration of the
message loop removes the character message from the queue and dispatches the message
to the appropriate window procedure.

16.1.4.1 Non-system Character Messages

A window procedure can receive the following character messages: WM_CHAR,
WM_DEADCHAR, WM_SYSCHAR, WM_SYSDEADCHAR, and WM_UNICHAR.
The TranslateMessage function generates a WM_CHAR or WM_DEADCHAR
message when it processes a WM_KEYDOWN message. Similarly, it generates a
WM_SYSCHAR or WM_SYSDEADCHAR message when it processes a
WM_SYSKEYDOWN message.

An application that processes keyboard input typically ignores all but the WM_CHAR
and WM_UNICHAR messages, passing any other messages to the DefWindowProc
function. Note that WM_CHAR uses 16-bit Unicode transformation format (UTF) while
WM_UNICHAR uses UTF-32. The system uses the WM_SYSCHAR and
WM_SYSDEADCHAR messages to implement menu mnemonics.

The wParam parameter of all character messages contains the character code of the
character key that was pressed. The value of the character code depends on the window
class of the window receiving the message. If the Unicode version of the RegisterClass
function was used to register the window class, the system provides Unicode characters
to all windows of that class. Otherwise, the system provides ASCII character codes. For
more information, see Unicode and Character Sets.

The contents of the lParam parameter of a character message are identical to the contents
of the lParam parameter of the key-down message that was translated to produce the
character message.

16.1.4.2 Dead-Character Messages

Some non-English keyboards contain character keys that are not expected to produce
characters by them. Instead, they are used to add a diacritic to the character produced by
the subsequent keystroke. These keys are called dead keys. The circumflex key on a
German keyboard is an example of a dead key. To enter the character consisting of an "o"
with a circumflex, a German user would type the circumflex key followed by the "o" key.
The window with the keyboard focus would receive the following sequence of messages:

 WM_KEYDOWN
 WM_DEADCHAR
 WM_KEYUP
 WM_KEYDOWN
 WM_CHAR
 WM_KEYUP

Input Devices 8

TranslateMessage generates the WM_DEADCHAR message when it processes the
WM_KEYDOWN message from a dead key. Although the wParam parameter of the
WM_DEADCHAR message contains the character code of the diacritic for the dead
key, an application typically ignores the message. Instead, it processes the WM_CHAR
message generated by the subsequent keystroke. The WM_CHAR parameter of the
WM_CHAR message contains the character code of the letter with the diacritic. If the
subsequent keystroke generates a character that cannot be combined with a diacritic, the
system generates two WM_CHAR messages. The wParam parameter of the first
contains the character code of the diacritic; the wParam parameter of the second contains
the character code of the subsequent character key.

The TranslateMessage function generates the WM_SYSDEADCHAR message when it
processes the WM_SYSKEYDOWN message from a system dead key (a dead key that
is pressed in combination with the ALT key). An application typically ignores the
WM_SYSDEADCHAR message.

16.1.5 Key Status

While processing a keyboard message, an application may need to determine the status of
another key besides the one that generated the current message. For example, a word-
processing application that allows the user to press SHIFT+END to select a block of text
must check the status of the SHIFT key whenever it receives a keystroke message from
the END key. The application can use the GetKeyState function to determine the status of
a virtual key at the time the current message was generated; it can use the
GetAsyncKeyState function to retrieve the current status of a virtual key.

The keyboard layout maintains a list of names. The name of a key that produces a single
character is the same as the character produced by the key. The name of a noncharacter
key such as TAB and ENTER is stored as a character string. An application can retrieve
the name of any key from the device driver by calling the GetKeyNameText function.

16.1.6 Key Stroke and Character Translations

The system includes several special purpose functions that translate scan codes, character
codes, and virtual-key codes provided by various keystroke messages. These functions
include MapVirtualKey, ToAscii, ToUnicode, and VkKeyScan.

16.1.7 Hot-key Support

A hot key is a key combination that generates a WM_HOTKEY message, a message the
system places at the top of a thread's message queue, bypassing any existing messages in
the queue. Applications use hot keys to obtain high-priority keyboard input from the user.
For example, by defining a hot key consisting of the CTRL+C key combination, an
application can allow the user to cancel a lengthy operation.

To define a hot key, an application calls the RegisterHotKey function, specifying the
combination of keys that generates the WM_HOTKEY message, the handle to the

Input Devices 9

window to receive the message, and the identifier of the hot key. When the user presses
the hot key, a WM_HOTKEY message is placed in the message queue of the thread that
created the window. The wParam parameter of the message contains the identifier of the
hot key. The application can define multiple hot keys for a thread, but each hot key in the
thread must have a unique identifier. Before the application terminates, it should use the
UnregisterHotKey function to destroy the hot key.

Applications can use a hot key control to make it easy for the user to choose a hot key.
Hot key controls are typically used to define a hot key that activates a window; they do
not use the RegisterHotKey and UnregisterHotKey functions. Instead, an application
that uses a hot key control typically sends the WM_SETHOTKEY message to set the hot
key. Whenever the user presses the hot key, the system sends a WM_SYSCOMMAND
message specifying SC_HOTKEY. For more information about hot key controls, see
"Using Hot Key Controls" in Hot Key Controls.

16.1.8 Languages, Locals, and Keyboard Layouts

A language is a natural language, such as English, French, and Japanese. A sublanguage
is a variant of a natural language that is spoken in a specific geographical region, such as
the English sublanguages spoken in England and the United States. Applications use
values, called language identifiers, to uniquely identify languages and sublanguages.

Applications typically use locales to set the language in which input and output is
processed. Setting the locale for the keyboard, for example, affects the character values
generated by the keyboard. Setting the locale for the display or printer affects the glyphs
displayed or printed. Applications set the locale for a keyboard by loading and using
keyboard layouts. They set the locale for a display or printer by selecting a font that
supports the specified locale.

A keyboard layout not only specifies the physical position of the keys on the keyboard
but also determines the character values generated by pressing those keys. Each layout
identifies the current input language and determines which character values are generated
by which keys and key combinations.

Every keyboard layout has a corresponding handle that identifies the layout and
language. The low word of the handle is a language identifier. The high word is a device
handle specifying the physical layout, or is zero indicating a default physical layout. The
user can associate any input language with a physical layout. For example, an English-
speaking user who very occasionally works in French can set the input language of the
keyboard to French without changing the physical layout of the keyboard. This means the
user can enter text in French using the familiar English layout.

Applications are generally not expected to manipulate input languages directly. Instead,
the user sets up language and layout combinations, and then switches among them. When
the user clicks into text marked with a different language, the application calls the
ActivateKeyboardLayout function to activate the user's default layout for that language.
If the user edits text in a language which is not in the active list, the application can call

Input Devices 10

the LoadKeyboardLayout function with the language to get a layout based on that
language.

The ActivateKeyboardLayout function sets the input language for the current task. The
hkl parameter can be either the handle to the keyboard layout or a zero-extended language
identifier. Keyboard layout handles can be obtained from the LoadKeyboardLayout or
GetKeyboardLayoutList function. The HKL_NEXT and HKL_PREV values can also be
used to select the next or previous keyboard.

The GetKeyboardLayoutName function retrieves the name of the active keyboard layout
for the calling thread. If an application creates the active layout using the
LoadKeyboardLayout function, GetKeyboardLayoutName retrieves the same string
used to create the layout. Otherwise, the string is the primary language identifier
corresponding to the locale of the active layout. This means the function may not
necessarily differentiate among different layouts with the same primary language so, it
cannot return specific information about the input language. The GetKeyboardLayout
function, however, can be used to determine the input language.

The LoadKeyboardLayout function loads a keyboard layout and makes the layout
available to the user. Applications can make the layout immediately active for the current
thread by using the KLF_ACTIVATE value. An application can use the
KLF_REORDER value to reorder the layouts without also specifying the
KLF_ACTIVATE value. Applications should always use the KLF_SUBSTITUTE_OK
value when loading keyboard layouts to ensure that the user's preference, if any, is
selected.

For multilingual support, the LoadKeyboardLayout function provides the
KLF_REPLACELANG and KLF_NOTELLSHELL flags. The KLF_REPLACELANG
flag directs the function to replace an existing keyboard layout without changing the
language. Attempting to replace an existing layout using the same language identifier but
without specifying KLF_REPLACELANG is an error. The KLF_NOTELLSHELL flag
prevents the function from notifying the shell when a keyboard layout is added or
replaced. This is useful for applications that add multiple layouts in a consecutive series
of calls. This flag should be used in all but the last call.

The UnloadKeyboardLayout function is restricted in that it cannot unload the system
default input language. This ensures that the user always has one layout available for
enter text using the same character set as used by the shell and file system.

16.1.9 Keyboard Messages (brief)
The following are some of the keyboard messages.

WM_KEYDOWN: when the key down
WM_KEYUP: when the key up
WM_SYSKEYDOWN: when the system key down, e.g. ALT key
WM_SYSKEYUP: when the system key up

Input Devices 11

When user press Ctrl + key then two messages of WM_KEYDOWN and two messages
WM_KEYUP are sent to the Application Message Queue.

16.1.10 Key down message format

The WM_KEYDOWN message is posted to the window with the keyboard focus when
a nonsystem key is pressed. A nonsystem key is a key that is pressed when the ALT key
is not pressed.

WM_KEYDOWN

 WPARAM wParam //wParam of the key down
 LPARAM lParam; /*lParam of the key down
messages*/

wParam: Specifies the virtual-key code of the nonsystem key.

lParam: Specifies the repeat count, scan code, extended-key flag, context code, previous
key-state flag, and transition-state flag, as shown in the following table.

0-15: Specifies the repeat count for the current message. The value is the number
of times the keystroke is autorepeated as a result of the user holding down the
key. If the keystroke is held long enough, multiple messages are sent. However,
the repeat count is not cumulative.
16-23: Specifies the scan code. The value depends on the OEM.
24: Specifies whether the key is an extended key, such as the right-hand ALT and
CTRL keys that appear on an enhanced 101- or 102-key keyboard. The value is 1
if it is an extended key; otherwise, it is 0.
25-28: Reserved; do not use.
29: Specifies the context code. The value is always 0 for a WM_KEYDOWN
message.
30: Specifies the previous key state. The value is 1 if the key is down before the
message is sent, or it is zero if the key is up.
31: Specifies the transition state. The value is always zero for a
WM_KEYDOWN message.

16.1.11 Character message format

The WM_CHAR message is posted to the window with the keyboard focus when a
WM_KEYDOWN message is translated by the TranslateMessage function. The
WM_CHAR message contains the character code of the key that was pressed.

WM_CHAR

 WPARAM wParam /*character code in this message

Input Devices 12

Enter Key Pressed

WM_CHAR Message Generated
wParam contains ‘\n’ OR
 0x0A OR
 10

WM_KEYDOWN Message generated

TranslateMessage() is called

 LPARAM lParam; /*data or scan code of character
parameter*/

wParam: Specifies the character code of the key.
lParam: Specifies the repeat count, scan code, extended-key flag, context code, previous
key-state flag, and transition-state flag.

16.1.12 Getting Key State
GetKeyState function gets the key state either its pressed or un-pressed.

SHORT GetKeyState(
 Int vVirtKey) //virtual key code
);

There is another function available which is:

SHORT GetAsyncKeyState(
 Int vVirtKey //virtual key code
);

Their complete description can be found from Microsoft Help System.

16.1.13 Character Message Processing

Figure 3

Input Devices 13

16.2 Caret
A caret is a blinking line, block, or bitmap in the client area of a window. The caret
typically indicates the place at which text or graphics will be inserted.

The system provides one caret per message queue. A window should create a caret only
when it has the keyboard focus or is active. The window should destroy the caret before
losing the keyboard focus or becoming inactive.

Use the CreateCaret function to specify the parameters for a caret. The system forms a
caret by inverting the pixel color within the rectangle specified by the caret's position,
width, and height. The width and height are specified in logical units; therefore, the
appearance of a caret is subject to the window's mapping mode.

16.2.1 Caret Visibility

After the caret is defined, use the ShowCaret function to make the caret visible. When the
caret appears, it automatically begins flashing. To display a solid caret, the system inverts
every pixel in the rectangle; to display a gray caret, the system inverts every other pixel;
to display a bitmap caret, and the system inverts only the white bits of the bitmap.

16.2.2 Caret Blink Time

The elapsed time, in milliseconds, required to invert the caret is called the blink time. The
caret will blink as long as the thread that owns the message queue has a message pump
processing the messages.

The user can set the blink time of the caret using the Control Panel and applications
should respect the settings that the user has chosen. An application can determine the
caret's blink time by using the GetCaretBlinkTime function. If you are writing an
application that allows the user to adjust the blink time, such as a Control Panel applet,
use the SetCaretBlinkTime function to set the rate of the blink time to a specified number
of milliseconds.

The flash time is the elapsed time, in milliseconds, required to display, invert, and restore
the caret's display. The flash time of a caret is twice as much as the blink time.

16.2.3 Caret Position

You can determine the position of the caret using the GetCaretPos function. The position,
in client coordinates, is copied to a structure specified by a parameter in GetCaretPos.
An application can move a caret in a window by using the SetCaretPos function. A
window can move a caret only if it already owns the caret. SetCaretPos can move the
caret whether it is visible or not.

Input Devices 14

16.2.4 Removing a Caret

You can temporarily remove a caret by hiding it, or you can permanently remove the
caret by destroying it. To hide the caret, use the HideCaret function. This is useful when
your application must redraw the screen while processing a message, but must keep the
caret out of the way. When the application finishes drawing, it can display the caret again
by using the ShowCaret function. Hiding the caret does not destroy its shape or invalidate
the insertion point. Hiding the caret is cumulative, that is, if the application calls
HideCaret five times, it must also call ShowCaret five times before the caret will
reappear.

To remove the caret from the screen and destroy its shape, use using the DestroyCaret
function. DestroyCaret destroys the caret only if the window involved in the current task
owns the caret.

16.2.5 Caret Functions

The following functions are used to handle a caret

 CreateCaret()
 DestroyCaret()
 SetCaretPos()

16.3 Mouse

In old ages or in Dos age, mouse is initialized with the interrupt INT 33h. Now-a-days we
don’t need to use interrupt and its services because we have windows which provides
APIs instead of interrupts. So using these APIs we can handle mouse and its other
properties.

The mouse is an important, but optional, user-input device for applications. A well-
written application should include a mouse interface, but it should not depend solely on
the mouse for acquiring user input. The application should provide full keyboard support
as well.

An application receives mouse input in the form of messages that are sent or posted to its
windows.

16.3.1 Mouse Cursor

When the user moves the mouse, the system moves a bitmap on the screen called the
mouse cursor. The mouse cursor contains a single-pixel point called the hot spot, a point
that the system tracks and recognizes as the position of the cursor. When a mouse event
occurs, the window that contains the hot spot typically receives the mouse message

Input Devices 15

resulting from the event. The window need not be active or have the keyboard focus to
receive a mouse message.

The system maintains a variable that controls mouse speed, that is, the distance the cursor
moves when the user moves the mouse. You can use the SystemParametersInfo function
with the SPI_GETMOUSE or SPI_SETMOUSE flag to retrieve or set mouse speed. For
more information about mouse cursors, see Cursors.

16.3.2 Mouse Capture

The system typically posts a mouse message to the window that contains the cursor hot
spot when a mouse event occurs. An application can change this behavior by using the
SetCapture function to route mouse messages to a specific window. The window receives
all mouse messages until the application calls the ReleaseCapture function or specifies
another capture window, or until the user clicks a window created by another thread.

When the mouse captures changes, the system sends a WM_CAPTURECHANGED
message to the window that is losing the mouse capture. The lParam parameter of the
message specifies a handle to the window that is gaining the mouse capture.

Only the foreground window can capture mouse input. When a background window
attempts to capture mouse input, it receives messages only for mouse events that occur
when the cursor hot spot is within the visible portion of the window.

Capturing mouse input is useful if a window must receive all mouse input, even when the
cursor moves outside the window. For example, an application typically tracks the cursor
position after a mouse button down event, following the cursor until a mouse button up
event occurs. If an application has not captured mouse input and the user releases the
mouse button outside the window, the window does not receive the button-up message.

A thread can use the GetCapture function to determine whether one of its windows has
captured the mouse. If one of the thread's windows has captured the mouse, GetCapture
retrieves a handle to the window.

16.3.3 Mouse Configuration

Although the mouse is an important input device for applications, not every user
necessarily has a mouse.

An application can determine whether the system includes a mouse by passing the
SM_MOUSEPRESENT value to the GetSystemMetrics function.

Windows supports a mouse having up to three buttons. On a three-button mouse, the
buttons are designated as the left, middle, and right buttons. Messages and named
constants related to the mouse buttons use the letters L, M, and R to identify the buttons.
The button on a single-button mouse is considered to be the left button. Although

Input Devices 16

Windows supports a mouse with multiple buttons, most applications use the left button
primarily and the others minimally, if at all.

An application can determine the number of buttons on the mouse by passing the
SM_CMOUSEBUTTONS value to the GetSystemMetrics function.

To configure the mouse for a left-handed user, the application can use the
SwapMouseButton function to reverse the meaning of the left and right mouse buttons.
Passing the SPI_SETMOUSEBUTTONSWAP value to the SystemParametersInfo
function is another way to reverse the meaning of the buttons. Note, however, that the
mouse is a shared resource, so reversing the meaning of the buttons affects all
applications

16.3.4 Mouse Messages

The mouse generates an input event when the user moves the mouse, or presses or
releases a mouse button. The system converts mouse input events into messages and
posts them to the appropriate thread's message queue. When mouse messages are posted
faster than a thread can process them, the system discards all but the most recent mouse
message.

A window receives a mouse message when a mouse event occurs while the cursor is
within the borders of the window, or when the window has captured the mouse. Mouse
messages are divided into two groups: client area messages and nonclient area messages.
Typically, an application processes client area messages and ignores nonclient area
messages.

16.3.4.1 Client Area Mouse Messages

A window receives a client area mouse message when a mouse event occurs within the
window's client area. The system posts the WM_MOUSEMOVE message to the window
when the user moves the cursor within the client area. It posts one of the following
messages when the user presses or releases a mouse button while the cursor is within the
client area.

Message Meaning
WM_LBUTTONDBLCLK The left mouse button was double-clicked.
WM_LBUTTONDOWN The left mouse button was pressed.
WM_LBUTTONUP The left mouse button was released.
WM_MBUTTONDBLCLK The middle mouse button was double-clicked.
WM_MBUTTONDOWN The middle mouse button was pressed.
WM_MBUTTONUP The middle mouse button was released.
WM_RBUTTONDBLCLK The right mouse button was double-clicked.
WM_RBUTTONDOWN The right mouse button was pressed.
WM_RBUTTONUP The right mouse button was released.

Input Devices 17

In addition, an application can call the TrackMouseEvent function to have the system
send two other messages. It posts the WM_MOUSEHOVER message when the cursor
hovers over the client area for a certain time period. It posts the WM_MOUSELEAVE
message when the cursor leaves the client area.

Message Parameters

The lParam parameter of a client area mouse message indicates the position of the cursor
hot spot. The low-order word indicates the x-coordinate of the hot spot, and the high-
order word indicates the y-coordinate. The coordinates are specified in client coordinates.
In the client coordinate system, all points on the screen are specified relative to the
coordinates (0, 0) of the upper-left corner of the client area.

The wParam parameter contains flags that indicate the status of the other mouse buttons
and the CTRL and SHIFT keys at the time of the mouse event. You can check for these
flags when mouse-message processing depends on the state of another mouse button or of
the CTRL or SHIFT key. The wParam parameter can be a combination of the following
values.

Value Meaning
MK_CONTROL The CTRL key is down.
MK_LBUTTON The left mouse button is down.
MK_MBUTTON The middle mouse button is down.
MK_RBUTTON The right mouse button is down.
MK_SHIFT The SHIFT key is down.

Double Click Messages

The system generates a double-click message when the user clicks a mouse button twice
in quick succession. When the user clicks a button, the system establishes a rectangle
centered around the cursor hot spot. It also marks the time at which the click occurred.
When the user clicks the same button a second time, the system determines whether the
hot spot is still within the rectangle and calculates the time elapsed since the first click. If
the hot spot is still within the rectangle and the elapsed time does not exceed the double-
click time-out value, the system generates a double-click message.

An application can get and set double-click time-out values by using the
GetDoubleClickTime and SetDoubleClickTime functions, respectively. Alternatively, the
application can set the double-click–time-out value by using the
SPI_SETDOUBLECLICKTIME flag with the SystemParametersInfo function. It can
also set the size of the rectangle that the system uses to detect double-clicks by passing
the SPI_SETDOUBLECLKWIDTH and SPI_SETDOUBLECLKHEIGHT flags to

Input Devices 18

SystemParametersInfo. Note, however, that setting the double-click–time-out value and
rectangle affects all applications.

An application-defined window does not, by default, receive double-click messages.
Because of the system overhead involved in generating double-click messages, these
messages are generated only for windows belonging to classes that have the
CS_DBLCLKS class style. Your application must set this style when registering the
window class. For more information, see Window Classes.

A double-click message is always the third message in a four-message series. The first
two messages are the button-down and button-up messages generated by the first click.
The second click generates the double-click message followed by another button-up
message. For example, double-clicking the left mouse button generates the following
message sequence:

 WM_LBUTTONDOWN
 WM_LBUTTONUP
 WM_LBUTTONDBLCLK
 WM_LBUTTONUP

Because a window always receives a button-down message before receiving a double-
click message, an application typically uses a double-click message to extend a task it
began during a button-down message. For example, when the user clicks a color in the
color palette of Microsoft Paint, Paint displays the selected color next to the palette.
When the user double-clicks a color, Paint displays the color and opens the Edit Colors
dialog box.

16.3.4.2 Non Client Area Mouse Messages

A window receives a nonclient area mouse message when a mouse event occurs in any
part of a window except the client area. A window's nonclient area consists of its border,
menu bar, title bar, scroll bar, window menu, minimize button, and maximize button.

The system generates nonclient area messages primarily for its own use. For example, the
system uses nonclient area messages to change the cursor to a two-headed arrow when
the cursor hot spot moves into a window's border. A window must pass nonclient area
mouse messages to the DefWindowProc function to take advantage of the built-in mouse
interface.

There is a corresponding nonclient area mouse message for each client area mouse
message. The names of these messages are similar except that the named constants for
the nonclient area messages include the letters NC. For example, moving the cursor in the
nonclient area generates a WM_NCMOUSEMOVE message, and pressing the left mouse
button while the cursor is in the nonclient area generates a WM_NCLBUTTONDOWN
message.

Input Devices 19

The lParam parameter of a nonclient area mouse message is a structure that contains the
x- and y-coordinates of the cursor hot spot. Unlike coordinates of client area mouse
messages, the coordinates are specified in screen coordinates rather than client
coordinates. In the screen coordinate system, all points on the screen are relative to the
coordinates (0,0) of the upper-left corner of the screen.

The wParam parameter contains a hit-test value, a value that indicates where in the
nonclient area the mouse event occurred.

16.3.4.3 The WM_NCHITTEST Message

Whenever a mouse event occurs, the system sends a WM_NCHITTEST message to
either the window that contains the cursor hot spot or the window that has captured the
mouse. The system uses this message to determine whether to send a client area or
nonclient area mouse message. An application that must receive mouse movement and
mouse button messages must pass the WM_NCHITTEST message to the
DefWindowProc function.

The lParam parameter of the WM_NCHITTEST message contains the screen
coordinates of the cursor hot spot. The DefWindowProc function examines the
coordinates and returns a hit-test value that indicates the location of the hot spot. The hit-
test value can be one of the following values.

Value Location of hot spot
HTBORDER In the border of a window that does not have a sizing border.
HTBOTTOM In the lower-horizontal border of a window.
HTBOTTOMLEFT In the lower-left corner of a window border.
HTBOTTOMRIGHT In the lower-right corner of a window border.
HTCAPTION In a title bar.
HTCLIENT In a client area.
HTCLOSE In a Close button.

HTERROR
On the screen background or on a dividing line between windows
(same as HTNOWHERE, except that the DefWindowProc
function produces a system beep to indicate an error).

HTGROWBOX In a size box (same as HTSIZE).
HTHELP In a Help button.
HTHSCROLL In a horizontal scroll bar.
HTLEFT In the left border of a window.
HTMENU In a menu.
HTMAXBUTTON In a Maximize button.
HTMINBUTTON In a Minimize button.
HTNOWHERE On the screen background or on a dividing line between windows.
HTREDUCE In a Minimize button.

Input Devices 20

HTRIGHT In the right border of a window.
HTSIZE In a size box (same as HTGROWBOX).
HTSYSMENU In a System menu or in a Close button in a child window.
HTTOP In the upper-horizontal border of a window.
HTTOPLEFT In the upper-left corner of a window border.
HTTOPRIGHT In the upper-right corner of a window border.

HTTRANSPARENT In a window currently covered by another window in the same
thread.

HTVSCROLL In the vertical scroll bar.
HTZOOM In a Maximize button.

If the cursor is in the client area of a window, DefWindowProc returns the HTCLIENT
hit-test value to the window procedure. When the window procedure returns this code to
the system, the system converts the screen coordinates of the cursor hot spot to client
coordinates, and then posts the appropriate client area mouse message.

The DefWindowProc function returns one of the other hit-test values when the cursor
hot spot is in a window's nonclient area. When the window procedure returns one of these
hit-test values, the system posts a nonclient area mouse message, placing the hit-test
value in the message's wParam parameter and the cursor coordinates in the lParam
parameter.

16.3.5 Screen and Client Area Coordinates

Screen coordinates start from the top left corner of the screen and end to right bottom
coordinates of the screen.
But Client Area coordinates start from the top left coordinate of the client area of the
window and ends with right-bottom coordinate of the client area of the window.

These coordinates can be converted to each other. Conversion from screen area
coordinates to client area coordinates can be done by using function

BOOL ScreenToClient(
HWND hWnd, //handle to the window
LPPOINT lpPoint //point structure
);

And conversion from client area coordinates of window to screen area coordinates can be
done by using function.

BOOL ClientToScreen(
HWND hWnd, //handle to the window
LPPOINT lpPoint //point structure
);

Input Devices 21

Summary
 In this lecture, we studied about the input devices. Input devices include keyboard
and mouse. Keyboard is used to input the system. Whenever we press a key on keyboard,
we generate a message. This message directly goes to the Operating system and then rout
to our application. Keyboard messages include Key down and key up messages. Another
type of messages is character messages these messages also come from keyboard.
Keyboard messages are translated to their Character values and then send to the
application in form of character message. Mouse is another input device. Almost all user
interfaces uses mouse as input device as well as keyboard. Mouse device is optional in
the system but useful in complex applications. Mouse can be used to point anywhere on
screen. Mouse sends different messages e.g. mouse can send left button down message
when the mouse left button is down and in the same way left button up message when the
left button is up. During the movement of mouse pointer on screen mouse move message
is always sent. During input session, caret is used to position the keyboard. Caret shows
character can be placed where the caret is blinking.

Exercises
1. Create your own status bar and show it in a window at its proper location. This

status bar should display current time and NUM Lock, CAPS LOCK, SCROLL
lock states. If these keys are pressed show them otherwise don’t show.

2. Using the mouse messages draw a line which starts when a mouse left button is
down and end when the mouse left button is up. During the mouse pressed state if
ESC key is pressed the process should be cancelled and line should not be drawn.

Chapter 17

17.1 TYPES OF WINDOWS RESOURCES 2
17.2 RESOURCE DEFINITION STATEMENTS 2
Resources 2
Controls 3
Statements 4
17.3 .RC FILES (RESOURCE FILES) 4
17.4 RESOURCE STATEMENTS IN RESOURCE FILE 5
17.5 USING RESOURCE COMPILER (RC) 5
Options 5
17.6 LOADING AN ICON FROM THE RESOURCE TABLE 6
17.7 STRING TABLE IN A RESOURCE FILE 7
17.8 LOADING STRING 7
17.9 KEYBOARD ACCELERATOR 8
17.10 DEFINING AN ACCELERATOR 8
17.11 LOADING ACCELERATOR RESOURCE 9
17.12 TRANSLATE ACCELERATOR 9
17.13 TRANSLATE ACCELERATOR AT WORK 11
17.14 HANDLING ACCELERATOR KEYS 11
17.14.1 WINDOWS PROCEDURE 12
SUMMARY 12
EXERCISES 12

Resources 2

Resource is binary data that you can add to the executable file of a Windows-based
application. A resource can be either standard or defined. The data in a standard resource
describes an icon, cursor, menu, dialog box, bitmap, enhanced metafile, font, accelerator
table, message-table entry, string-table entry, or version information. An application-
defined resource, also called a custom resource, contains any data required by a specific
application.
17.1 Types of windows resources
Following are the Windows Resources are used in windows.

• Accelerator
• String Table
• Icon
• Bitmap
• Dialog
• Menu
• Cursor
• Version

17.2 Resource Definition Statements

The resource-definition statements define the resources that the resource compiler puts in
the resource (.Res) file. After the .Res file is linked to the executable file, the application
can load its resources at run time as needed. All resource statements associate an
identifying name or number with a given resource.

The resource-definition statements can be divided into the following categories:

• Resources
• Controls
• Statements

The following tables describe the resource-definition statements.

Resources
Resource Description

ACCELERATORS Defines menu accelerator keys.

BITMAP
Defines a bitmap by naming it and specifying the name of the file
that contains it. (To use a particular bitmap, the application requests
it by name.)

CURSOR
Defines a cursor or animated cursor by naming it and specifying the
name of the file that contains it. (To use a particular cursor, the
application requests it by name.)

Resources 3

DIALOG Defines a template that an application can use to create dialog
boxes.

DIALOGEX Defines a template that an application can use to create dialog
boxes.

FONT Specifies the name of a file that contains a font.

ICON
Defines an icon or animated icon by naming it and specifying the
name of the file that contains it. (To use a particular icon, the
application requests it by name.)

MENU Defines the appearance and function of a menu.
MENUEX Defines the appearance and function of a menu.

MESSAGETABLE
Defines a message table by naming it and specifying the name of
the file that contains it. The file is a binary resource file generated
by the message compiler.

POPUP Defines a menu item that can contain menu items and submenus.

RCDATA Defines data resources. Data resources let you include binary data in
the executable file.

STRINGTABLE Defines string resources. String resources are Unicode or ASCII
strings that can be loaded from the executable file.

User-Defined Defines a resource that contains application-specific data.

VERSIONINFO Defines a version-information resource. Contains information such
as the version number, intended operating system, and so on.

Controls
Control Description

AUTO3STATE Creates an automatic three-state check box control.
AUTOCHECKBOX Creates an automatic check box control.
AUTORADIOBUTTON Creates an automatic radio button control.
CHECKBOX Creates a check box control.
COMBOBOX Creates a combo box control.
CONTROL Creates an application-defined control.
CTEXT Creates a centered-text control.
DEFPUSHBUTTON Creates a default pushbutton control.
EDITTEXT Creates an edit control.
GROUPBOX Creates a group box control.

ICON Creates an icon control. This control is an icon displayed in a
dialog box.

LISTBOX Creates a list box control.
LTEXT Creates a left-aligned text control.
PUSHBOX Creates a push box control.
PUSHBUTTON Creates a push button control.

Resources 4

.rc File (text file containing resource
statements

Link with other files to make final EXE
(using linker) File in windows.

Compile to .res file (using resource
compiler)

RADIOBUTTON Creates a radio button control.
RTEXT Creates a right-aligned control.
SCROLLBAR Creates a scroll bar control.
STATE3 Creates a three-state check box control.

Statements
Statement Description

CAPTION Sets the title for a dialog box.

CHARACTERISTICS Specifies information about a resource that can be used by tool
that can read or write resource-definition files.

CLASS Sets the class of the dialog box.
EXSTYLE Sets the extended window style of the dialog box.

FONT Sets the font with which the system will draw text for the dialog
box.

LANGUAGE

Sets the language for all resources up to the next LANGUAGE
statement or to the end of the file. When the LANGUAGE
statement appears before the beginning of the body of an
ACCELERATORS, DIALOG, MENU, RCDATA, or
STRINGTABLE resource definition, the specified language
applies only to that resource.

MENU Sets the menu for the dialog box.
MENUITEM Defines a menu item.
STYLE Sets the window style for the dialog box.

VERSION Specifies version information for a resource that can be used by
tool that can read or write resource-definition files.

17.3 .rc files (resource files)

Figure 1

Resources 5

17.4 Resource Statements in Resource File

ICON resource statement in a resource file (.rc)

#define IDI_ICON 101

IDI_ICON ICON DISCARDABLE “vu.ico”
Integer id reserved icon
 word filename
101 ICON DISCARDABLE “vu.ico”

17.5 Using Resource Compiler (RC)

To start RC, use the RC command.

RC [[options]] script-file

The script-file parameter specifies the name of the resource-definition file that contains
the names, types, filenames, and descriptions of the resources to be compiled. The
options parameter can be one or more of the following command-line options.

Options
/?

Displays a list of RC command-line options.
/d

Defines a symbol for the preprocessor that you can test with the #ifdef directive.
/fo resname

Uses resname for the name of the .RES file.
/h

Displays a list of RC command-line options.
/i

Searches the specified directory before searching the directories specified by the
INCLUDE environment variable.

/l codepage
Specifies default language for compilation. For example, -l409 is equivalent to
including the following statement at the top of the resource script file:
LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_US

For more information, see Language Identifiers.

Alternatively, you use #pragma code_page(409) in the .RC file.

/n Null terminates all strings in the string table.

/r Ignored. Provided for compatibility with existing makefiles.

Resources 6

/u Undefines a symbol for the preprocessor.

/v Display messages that report on the progress of the compiler.

/x Prevents RC from checking the INCLUDE environment variable when searching
for header files or resource files.

Options are not case sensitive and a hyphen (-) can be used in place of a slash mark (/).
You can combine single-letter options if they do not require any additional parameters.
For example, the following two commands are equivalent:

rc /V /X SAMPLE.RC
rc -vx sample.rc

17.6 Loading an Icon from the resource table

The LoadIcon function loads the specified icon resource from the executable (.exe) file
associated with an application instance.

HICON LoadIcon(

 HINSTANCE hInstance, /*handle to the instance*/
 LPCTSTR lpIconName /*string to the icon data*/
);

hInstance: Handle to an instance of the module whose executable file contains the icon to
be loaded. This parameter must be NULL when a standard icon is being loaded.

lpIconName:
Pointer to a null-terminated string that contains the name of the icon resource to be
loaded. Alternatively, this parameter can contain the resource identifier in the low-order
word and zero in the high-order word. Use the MAKEINTRESOURCE macro to create
this value.

To use one of the predefined icons, set the hInstance parameter to NULL and the
lpIconName parameter to one of the following values.

IDI_APPLICATION: Default application icon.
IDI_ASTERISK: Same as IDI_INFORMATION.
IDI_ERROR: Hand-shaped icon.
IDI_EXCLAMATION: Same as IDI_WARNING.
IDI_HAND: Same as IDI_ERROR.
IDI_INFORMATION: Asterisk icon.
IDI_QUESTION: Question mark icon.
IDI_WARNING: Exclamation point icon.
IDI_WINLOGO: Windows logo icon.

Resources 7

Return Value:
If the function succeeds, the return value is a handle to the newly loaded icon.
If the function fails, the return value is NULL. To get extended error information,
use GetLastError.

LoadIcon loads the icon resource only if it has not been loaded; otherwise, it retrieves a
handle to the existing resource. The function searches the icon resource for the icon most
appropriate for the current display. The icon resource can be a color or monochrome
bitmap.

LoadIcon can only load an icon whose size conforms to the SM_CXICON and
SM_CYICON system metric values. Use the LoadImage function to load icons of other
sizes.

17.7 String table in a resource file

#include “resource.h”

STRINGTABLE DISCARDABLE
BEGIN

IDS_STRING1 “This is Virtual University"
IDS_STRING2 "MyWindowClass"
IDS_STRING3 “My Novel Programme"

END

17.8 Loading String

The LoadString function loads a string resource from the executable file associated with
a specified module, copies the string into a buffer, and appends a terminating null
character.

int LoadString(

 HINSTANCE hInstance,//handle to application instance*/
 UINT uID, /*//id of the string*/
 LPTSTR lpBuffer, /*buffer to receive string data*/
 int nBufferMax /*maximum buffer size is available
for the string data to store*/
);

hInstance: Handle to an instance of the module whose executable file contains the string
resource. To get the handle for the application itself, use GetModuleHandle(NULL).

uID: Specifies the integer identifier of the string to be loaded.

Resources 8

lpBuffer: Pointer to the buffer to receive the string.

nBufferMax: Specifies the size of the buffer, in TCHARs. This refers to bytes for
versions of the function or WCHARs for Unicode versions. The string is truncated and
null terminated if it is longer than the number of characters specified.

Return Value:If the function succeeds, the return value is the number of TCHARs copied
into the buffer, not including the null-terminating character, or zero if the string resource
does not exist. To get extended error information, call GetLastError.

17.9 Keyboard Accelerator

A keyboard accelerator, also known as a shortcut key, is a keystroke or combination of
keystrokes that generates a WM_COMMAND message. Keyboard accelerators are often
used as shortcuts for commonly used menu commands, but you can also use them to
generate commands that have no equivalent menu items. Include keyboard accelerators
for any common or frequent actions, and provide support for the common shortcut keys
where they apply.

You can use an ASCII character code or a virtual-key code to define the accelerator. A
virtual key is a device-independent value that identifies the purpose of a keystroke as
interpreted by the Windows keyboard device driver. An ASCII character code makes the
accelerator case-sensitive. The ASCII "C" character can define the accelerator as ALT+c
rather than ALT+C. Because accelerators do not need to be case-sensitive, most
applications use virtual-key codes for accelerators rather than ASCII character codes.

To create an accelerator table

1. Use a resource compiler to define an accelerator table resource and add it to your
executable file.

An accelerator table consists of an array of ACCEL data structures, each of
which defines an individual accelerator.

2. Call the LoadAccelerators function at run time to load the accelerator table and
to retrieve the handle of the accelerator table.

3. Pass a handle to the accelerator table to the TranslateAccelerator function to
activate the accelerator table.

17.10 Defining an Accelerator

#define ID_DO_BACK 1001
#define ID_ACC2 1002
#define ID_DRAWSTRING 1003

Resources 9

ACCELERATOR ACCELERATORS DISCARDABLE
BEGIN

VK_BACK, ID_DO_BACK, VIRTKEY, ALT, NOINVERT
VK_DELETE, ID_ACC2, VIRTKEY, ALT, NOINVERT … ……
. “^S", ID_DRAWSTRING, ASCII, NOINVERT

END

Labelling: Virtual Key or ASCII ID
Options(VIRTKEY, ASCII, ALT, CONTROL)

17.11 Loading Accelerator Resource

The LoadAccelerators function loads the specified accelerator table.

HACCEL LoadAccelerators(

 HINSTANCE hInstance, /*//handle to the application
instance*/
 LPCTSTR lpTableName /*string to the table name*/
);

hInstance: Handle to the module whose executable file contains the accelerator table to
load.
lpTableName: Pointer to a null-terminated string that contains the name of the accelerator
table to load. Alternatively, this parameter can specify the resource identifier of an
accelerator-table resource in the low-order word and zero in the high-order word. To
create this value, use the MAKEINTRESOURCE macro.

Return Value: If the function succeeds, the return value is a handle to the loaded
accelerator table.
If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

17.12 Translate Accelerator

The TranslateAccelerator function processes accelerator keys for menu commands. The
function translates a WM_KEYDOWN or WM_SYSKEYDOWN message to a
WM_COMMAND or WM_SYSCOMMAND message (if there is an entry for the key in
the specified accelerator table) and then sends the WM_COMMAND or
WM_SYSCOMMAND message directly to the appropriate window procedure.
TranslateAccelerator does not return until the window procedure has processed the
message.

Resources 10

int TranslateAccelerator(

 HWND hWnd, /*handle to the window to whom
accelerator attached*/
 HACCEL hAccTable, /*accelerate table*/
 LPMSG lpMsg /*MSG structure*/
);

hWnd: Handle to the window whose messages are to be translated.

hAccTable: Handle to the accelerator table. The accelerator table must have been loaded
by a call to the LoadAccelerators function or created by a call to the
CreateAcceleratorTable function.

lpMsg: Pointer to an MSG structure that contains message information retrieved from the
calling thread's message queue using the GetMessage or PeekMessage function.

Return Value: If the function succeeds, the return value is nonzero.If the function fails,
the return value is zero.

To differentiate the message that this function sends from messages sent by menus or
controls, the high-order word of the wParam parameter of the WM_COMMAND or
WM_SYSCOMMAND message contains the value 1.

Accelerator key combinations used to select items from the window menu are translated
into WM_SYSCOMMAND messages; all other accelerator key combinations are
translated into WM_COMMAND messages.

An accelerator need not correspond to a menu command.

If the accelerator command corresponds to a menu item, the application is sent
WM_INITMENU and WM_INITMENUPOPUP messages, as if the user were trying to
display the menu. However, these messages are not sent if any of the following
conditions exist:

• The window is disabled.
• The accelerator key combination does not correspond to an item on the window

menu and the window is minimized.
• A mouse capture is in effect. For information about mouse capture, see the

SetCapture function.

If the specified window is the active window and no window has the keyboard focus
(which is generally the case if the window is minimized), TranslateAccelerator
translates WM_SYSKEYUP and WM_SYSKEYDOWN messages instead of
WM_KEYUP and WM_KEYDOWN messages.

Resources 11

If an accelerator keystroke occurs that corresponds to a menu item when the window that
owns the menu is minimized, TranslateAccelerator does not send a WM_COMMAND
message. However, if an accelerator keystroke occurs that does not match any of the
items in the window’s menu or in the window menu, the function send a
WM_COMMAND message, even if the window is minimized.

17.13 Translate Accelerator at Work

VK_BACK, ID_DO_BACK, VIRTKEY, ALT, NOINVERT

Figure 2

17.14 Handling Accelerator Keys

HACCEL hAccel;

//Load the accelerator table

hAccel = LoadAccelerator(hInstance, MAKEINTRESOURCE(ACCELERATOR))

While(GetMessage(&msg, .. .,. . . , .. .))
{

//Call translateAccelerator to test if accelerator is pressed

If(!TranslateAccelerator(msg.hwnd, hAccel, &msg))

Alt + Backspace is pressed

WM_COMMAND message
With
wParam=low-word: ID_DO_BACK

Translate Accelerator sends a
WM_COMMAND message.

Resources 12

{
TranslateMessage(&msg);
DispatchMessage(&msg);

}
}

17.14.1 Windows Procedure

case WM_COMMAND:

if(LOWORD(wParam) == ID_DO_BACK)
{
 // accelerator is pressed
}

Summary
 In this lecture, we have been studying about resources. Resources are also very
much important subject in Windows executable files. Resources are separately compiled
using resource compiler. Resource compiler (RC) compiles them to binary resource and
these binary resource are then become the part of final executable file. Resource files are
simply text script files. Resource can be loaded from any DLL and EXE module. For
loading the resource, we have useful resource functions like LoadString that loads a
string from resource table and Load Icon etc. that loads an Icon data from resource data.

Exercises
 Practice to design your own resource including menus, bitmaps, dialogs, etc in
Visual Studio Resource Developer.

Chapter 18

18.1 MENUS 2
18.1.1 MENU BAR AND MENUS 2
18.1.1.1 SHORT CUT MENUS 3
18.1.1.2 THE WINDOW MENU 3
18.1.2 MENU HANDLES 4
18.1.3 STATE OF MENU ITEMS 4
18.2 MENU RESOURCE DEFINITION STATEMENT 4
18.3 LOADING MENU 5
18.4 SPECIFY DEFAULT CLASS MENU 5
18.5 SPECIFY MENU IN CREATEWINDOW 6
18.6 EXAMPLE APPLICATION 6
18.6.1 RESOURCE DEFINITION STRINGS 6
18.6.2 RESOURCE DEFINITION ICON 6
18.6.3 APPLICATION MENUS 6
18.6.4 APPLICATION WINDOW CLASS 7
18.6.5 CREATEWINDOW 7
18.6.6 WINDOW PROCEDURE 7
18.6.7 KEYBOARD ACCELERATOR 8
18.6.8 MESSAGE LOOP 9
SUMMARY 9
EXERCISES 9

String and Menu Resource 2

18.1 Menus

A menu is a list of items that specify options or groups of options (a submenu) for an
application. Clicking a menu item opens a submenu or causes the application to carry out
a command.

18.1.1 Menu bar and Menus

A menu is arranged in a hierarchy. At the top level of the hierarchy is the menu bar;
which contains a list of menus, which in turn can contain submenus. A menu bar is
sometimes called a top-level menu, and the menus and submenus are also known as pop-
up menus.

A menu item can either carry out a command or open a submenu. An item that carries out
a command is called a command item or a command.

An item on the menu bar almost always opens a menu. Menu bars rarely contain
command items. A menu opened from the menu bar drops down from the menu bar and
is sometimes called a drop-down menu. When a drop-down menu is displayed, it is
attached to the menu bar. A menu item on the menu bar that opens a drop-down menu is
also called a menu name.

The menu names on a menu bar represent the main categories of commands that an
application provides. Selecting a menu name from the menu bar typically opens a menu
whose menu items correspond to the commands in a category. For example, a menu bar
might contain a File menu name that, when clicked by the user, activates a menu with
menu items such as New, Open, and Save. To get information about a menu bar, call
GetMenuBarInfo.

Only an overlapped or pop-up window can contain a menu bar; a child window cannot
contain one. If the window has a title bar, the system positions the menu bar just below it.
A menu bar is always visible. A submenu is not visible, however, until the user selects a
menu item that activates it. For more information about overlapped and pop-up windows,
see Window Types.

Each menu must have an owner window. The system sends messages to a menu's owner
window when the user selects the menu or chooses an item from the menu.

String and Menu Resource 3

Figure 1 Menu in Visual Studio Editor

18.1.1.1 Short cut Menus

The system also provides shortcut menus. A shortcut menu is not attached to the menu
bar; it can appear anywhere on the screen. An application typically associates a shortcut
menu with a portion of a window, such as the client area, or with a specific object, such
as an icon. For this reason, these menus are also called context menus.

A shortcut menu remains hidden until the user activates it, typically by right-clicking a
selection, a toolbar, or a taskbar button. The menu is usually displayed at the position of
the caret or mouse cursor.

18.1.1.2 The Window Menu

The Window menu (also known as the System menu or Control menu) is a pop-up
menu defined and managed almost exclusively by the operating system. The user can
open the window menu by clicking the application icon on the title bar or by right-
clicking anywhere on the title bar.

The Window menu provides a standard set of menu items that the user can choose to
change a window's size or position, or close the application. Items on the window menu
can be added, deleted, and modified, but most applications just use the standard set of
menu items. An overlapped, pop-up, or child window can have a window menu. It is
uncommon for an overlapped or pop-up window not to include a window menu.

When the user chooses a command from the Window menu, the system sends a
WM_SYSCOMMAND message to the menu's owner window. In most applications, the
window procedure does not process messages from the window menu. Instead, it simply
passes the messages to the DefWindowProc function for system-default processing of the
message. If an application adds a command to the window menu, the window procedure
must process the command.

String and Menu Resource 4

An application can use the GetSystemMenu function to create a copy of the default
window menu to modify. Any window that does not use the GetSystemMenu function to
make its own copy of the window menu receives the standard window menu.

18.1.2 Menu Handles

The system generates a unique handle for each menu. A menu handle is a value of the
HMENU type. An application must specify a menu handle in many of the menu
functions. You receive a handle to a menu bar when you create the menu or load a menu
resource.

To retrieve a handle to the menu bar for a menu that has been created or loaded, use the
GetMenu function. To retrieve a handle to the submenu associated with a menu item, use
the GetSubMenu or GetMenuItemInfo function. To retrieve a handle to a window menu,
use the GetSystemMenu function.

18.1.3 State of Menu Items

Following are the states of Menu items:

• Checked (MF_CHECKED)
• Unchecked (MF_UNCHECKED)
• Enabled (MF_ENABLED)
• Disabled (MF_DISABLED)
• Grayed (MF_GRAYED)
• Separator (MF_SEPARATOR)
• Highlight (MF_HILIGHT)

18.2 Menu Resource Definition Statement

IDR_MY_MENU MENU DISCARDABLE
BEGIN

POPUP "&Tools“
BEGIN

MENUITEM "Write &Text", ID_TOOLS_WRITE_TEXT, GRAYED
MENUITEM SEPARATOR
POPUP "&Draw"
BEGIN
MENUITEM "&Rectangle", ID_TOOLS_DRAW_RECTANGLE
MENUITEM "&Circle", ID_TOOLS_DRAW_CIRCLE, CHECKED
MENUITEM "&Ellipse", ID_TOOLS_DRAW_ELLIPSE
END
MENUITEM SEPARATOR
MENUITEM "&Erase All", ID_TOOLS_ERASE_ALL, INACTIVE
END

String and Menu Resource 5

MENUITEM "&About...", ID_ABOUT
END

Clicking on menu item sends a WM_COMMAND message to its parent.
WM_COMMAND message contains Menu item ID in the low word of WPARAM and
handle in LPARAM.

18.3 Loading Menu

The LoadMenu function loads the specified menu resource from the executable (.exe)
file associated with an application instance.

HMENU LoadMenu(

 HINSTANCE hInstance, //handle to the instance of the */
 LPCTSTR lpMenuName /* Menu Name */
);

hInstance: Handle to the module containing the menu resource to be loaded.

lpMenuName: Pointer to a null-terminated string that contains the name of the menu
resource. Alternatively, this parameter can consist of the resource identifier in the low-
order word and zero in the high-order word. To create this value, use the
MAKEINTRESOURCE macro.

Return Value: If the function succeeds, the return value is a handle to the menu resource.
If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

18.4 Specify default class Menu

You can specify default class menu for windows by assigning Menu name to the
lpszMenuName parameter in window class.

wc. lpszMenuName= (LPCTSTR)IDR_MENU1;
……………..
……………..
if(!RegisterClass(&wc))
{
 return 0;
}

String and Menu Resource 6

18.5 Specify Menu in CreateWindow
Menu can be specifying in hMenu parameter of CreateWindow function. hMenu is the
handle of the menu so Menu handle must be specify here rather its name. if the handle of
the menu is specified then this will override class window menu.

18.6 Example Application

Now we will practically discuss the menus and Timers by making an application. In this
application we will display menu which will be enabled and disabled.

18.6.1 Resource Definition strings

#include “resource.h”

STRINGTABLE DISCARDABLE
BEGIN
IDS_APP_NAME "Virtual University"
IDS_CLASS_NAME "MyWindowClass"
END

18.6.2 Resource Definition Icon

IDI_MAIN_ICON ICON DISCARDABLE "VU.ICO"

Icon file name is VU.ICO

18.6.3 Application Menus

IDR_FIRST_MENU MENU DISCARDABLE
BEGIN

POPUP “&File"
BEGIN

MENUITEM "E&xit", ID_FILE_EXIT
END

POPUP "&Timer"
BEGIN
 MENUITEM "&Start",

ID_TIMER_START
MENUITEM "Sto&p",
ID_TIMER_STOP, GRAYED

END
END

String and Menu Resource 7

18.6.4 Application Window Class

#define BUFFER_SIZE 128

TCHAR windowClassName[BUFFER_SIZE];
LoadString(hInstance, IDS_CLASS_NAME, windowClassName, BUFFER_SIZE);
wc.hIcon = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_MAIN_ICON));
wc.lpszMenuName = MAKEINTRESOURCE(IDR_FIRST_MENU);
wc.lpszClassName = windowClassName

18.6.5 CreateWindow

#define BUFFER_SIZE 128
TCHAR windowName[BUFFER_SIZE];
… … …
LoadString(hInstance, IDS_APP_NAME, windowName, BUFFER_SIZE);
hWnd = CreateWindow(windowClassName, windowName, ...

18.6.6 Window Procedure

static int count;
static BOOL bTimerStarted;

case WM_CREATE:
count=0;
bTimerStarted=FALSE

case WM_COMMAND:
switch(LOWORD(wParam))
{

case ID_TIMER_START:
SetTimer(hWnd, ID_TIMER, 1000, NULL);
bTimerStarted=TRUE;
hOurMenu = GetMenu(hWnd);
EnableMenuItem(hOurMenu, ID_TIMER_START, MF_BYCOMMAND |

MF_GRAYED);
EnableMenuItem(hOurMenu, ID_TIMER_STOP, MF_BYCOMMAND |

MF_ENABLED);
DrawMenuBar(hWnd);

Case ID_TIMER_STOP:
KillTimer(hWnd, ID_TIMER);
bTimerStarted=FALSE;
hOurMenu = GetMenu(hWnd);

String and Menu Resource 8

EnableMenuItem(hOurMenu, ID_TIMER_STOP, MF_BYCOMMAND |
MF_GRAYED);

EnableMenuItem(hOurMenu, ID_TIMER_START, MF_BYCOMMAND |
MF_ENABLED);

DrawMenuBar(hWnd);
break;

case ID_FILE_EXIT:

DestroyWindow(hWnd);

case WM_TIMER:
switch(wParam)
{

case ID_TIMER:
++count; count %= 10;
GetClientRect(hWnd, &rect);
InvalidateRect(hWnd, &rect, TRUE); break; }
break;

}

TCHAR msg[10];

case WM_PAINT:

hDC = BeginPaint(hWnd, &ps);
wsprintf(msg, "Count: %2d", count);
TextOut(hDC, 10, 10, msg, lstrlen(msg));
EndPaint(hWnd, &ps);

break;

case WM_DESTROY:
if(bTimerStarted)
KillTimer(hWnd, ID_TIMER);
PostQuitMessage(0);
break;

18.6.7 Keyboard Accelerator

IDR_ACCELERATOR ACCELERATORS DISCARDABLE
BEGIN "P", ID_TIMER_STOP, VIRTKEY, CONTROL, NOINVERT

 "S", ID_TIMER_START, VIRTKEY, CONTROL, NOINVERT
 "X", ID_FILE_EXIT, VIRTKEY, ALT, NOINVERT
END

IDR_FIRST_MENU MENU DISCARDABLE

String and Menu Resource 9

BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "E&xit\tAlt+X", ID_FILE_EXIT
 END
 POPUP "&Timer"
 BEGIN

 MENUITEM "&Start\tCtrl+S", ID_TIMER_START
 MENUITEM "Sto&p\tCtrl+P", ID_TIMER_STOP, GRAYED

 END
END

18.6.8 Message Loop

HACCEL hAccelerators;
hAccelerators = LoadAccelerators(hInstance,
MAKEINTRESOURCE(IDR_ACCELERATOR));
while(GetMessage(&msg, NULL, 0, 0) > 0)
{

 if(!TranslateAccelerator(msg.hwnd, hAccelerators, &msg))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
}

Summary

 In this lecture, we studied about the menus resources and their entry in resource
definition file. Using menu accelerators you can use short cut keys to operate menus. At
the end we discussed an example application which enables or disable the menus. Menus
are used by almost every application except some games or other system tools. Using
menus we can watch different facilities or action provided by application.

Exercises
1. Show a popup menu whenever the mouse right button is up inside the client area.

The pop-up menu should contain at least three items.
2. Using the mouse messages draw a line which starts when a mouse left button is

down and end when the mouse left button is up. During the mouse pressed state if
ESC key is pressed the popup menu should be displayed which include menu item
Exit. If user press on the exit button process must be cancelled.
Use the PeekMessage function and filter the mouse messages only, for this you
will have to create another mouse loop that will be created when the mouse left
button is down and ends when mouse left button is up.

Chapter 19

19.1 MENUS 2
19.2 MENUS ITEMS 2
COMMAND ITEMS AND ITEMS THAT OPEN SUBMENUS 2
MENU-ITEM IDENTIFIER 2
MENU-ITEM POSITION 3
DEFAULT MENU ITEMS 3
SELECTED AND CLEAR MENU ITEMS 3
ENABLED, GRAYED, AND DISABLED MENU ITEMS 4
HIGHLIGHTED MENU ITEMS 5
OWNER-DRAWN MENU ITEMS 5
MENU ITEM SEPARATORS AND LINE BREAKS 5
19.3 DROP DOWN MENUS 6
19.4 GET SUB MENU 6
19.5 EXAMPLE APPLICATION 6
19.5.1 POPUP MENU (RESOURCE FILE VIEW) 6
19.5.2 THE WM_RBUTTONDOWN MESSAGE 7
19.5.3 STRUCTURE TO REPRESENT POINTS 7
19.5.4 MAIN WINDOW PROCEDURE 8
19.5.5 SET MENU ITEM INFORMATION 8
19.5.6 SYSTEM MENU 9
19.5.7 SYSTEM MENU IDENTIFIERS 9
19.6 TIME DIFFERENCES 10
19.7 TIME INFORMATION IN WINDOWS 10
19.8 CLOCK EXAMPLE (WINDOW PROCEDURE) 10
19.9 DIALOGS 12
19.9.1 MODAL DIALOG BOXES 12
19.9.2 MODELESS DIALOG BOXES 13
19.9.3 MESSAGE BOX FUNCTION 15
19.9.4 MODAL LOOP 15
19.9.5 DIALOG RESOURCE TEMPLATE 15
19.9.6 CREATING A MODAL DIALOG 16
SUMMARY 16
EXERCISES 16

Menu and Dialogs 2

19.1 Menus
We have discussed Menus in our previous lecture, here we will know more about menus
and their use in Windows Applications.

19.2 Menu Items

Command Items and Items that Open Submenus

When the user chooses a command item, the system sends a command message to the
window that owns the menu. If the command item is on the window menu, the system
sends the WM_SYSCOMMAND message. Otherwise, it sends the WM_COMMAND
message.

Handle is associated with each menu item that opens a submenu. When the user points to
such an item, the system opens the submenu. No command message is sent to the owner
window. However, the system sends a WM_INITMENUPOPUP message to the owner
window before displaying the submenu. You can get a handle to the submenu associated
with an item by using the GetSubMenu or GetMenuItemInfo function.

A menu bar typically contains menu names, but it can also contain command items. A
submenu typically contains command items, but it can also contain items that open nested
submenus. By adding such items to submenus, you can nest menus to any depth. To
provide a visual cue for the user, the system automatically displays a small arrow to the
right of the text of a menu item that opens a submenu.

Menu-Item Identifier

Associated with each menu item is a unique, application-defined integer, called a menu-
item identifier. When the user chooses a command item from a menu, the system sends
the item's identifier to the owner window as part of a WM_COMMAND message. The
window procedure examines the identifier to determine the source of the message, and
processes the message accordingly. In addition, you can specify a menu item using its
identifier when you call menu functions; for example, to enable or disable a menu item.

Menu items that open submenus have identifiers just as command items do. However, the
system does not send a command message when such an item is selected from a menu.
Instead, the system opens the submenu associated with the menu item.

To retrieve the identifier of the menu item at a specified position, use the
GetMenuItemID or GetMenuItemInfo function.

Menu and Dialogs 3

Menu-Item Position

In addition to having a unique identifier, each menu item in a menu bar or menu has a
unique position value. The leftmost item in a menu bar, or the top item in a menu, has
position zero. The position value is incremented for subsequent menu items. The system
assigns a position value to all items in a menu, including separators. The following
illustration shows the position values of items in a menu bar and in a menu.

When calling a menu function that modifies or retrieves information about a specific
menu item, you can specify the item using either its identifier or its position. For more
information, see Menu Modifications.

Default Menu Items

A submenu can contain one default menu item. When the user opens a submenu by
double-clicking, the system sends a command message to the menu's owner window and
closes the menu as if the default command item had been chosen. If there is no default
command item, the submenu remains open. To retrieve and set the default item for a
submenu, use the GetMenuDefaultItem and SetMenuDefaultItem functions.

Selected and Clear Menu Items

A menu item can be either selected or clear. The system displays a bitmap next to
selected menu items to indicate their selected state. The system does not display a bitmap
next to clear items, unless an application-defined "clear" bitmap is specified. Only menu
items in a menu can be selected; items in a menu bar cannot be selected.

Applications typically check or clear a menu item to indicate whether an option is in
effect. For example, suppose an application has a toolbar that the user can show or hide
by using a Toolbar command on a menu. When the toolbar is hidden, the Toolbar menu
item is clear. When the user chooses the command, the application checks the menu item
and shows the toolbar.

A check mark attribute controls whether a menu item is selected. You can set a menu
item's check mark attribute by using the CheckMenuItem function. You can use the

Menu and Dialogs 4

GetMenuState function to determine whether a menu item is currently selected or
cleared.

Instead of CheckMenuItem and GetMenuState, you can use the GetMenuItemInfo
and SetMenuItemInfo functions to retrieve and set the check state of a menu item.

Sometimes, a group of menu items corresponds to a set of mutually exclusive options. In
this case, you can indicate the selected option by using a selected radio menu item
(analogous to a radio button control). Selected radio items are displayed with a bullet
bitmap instead of a check mark bitmap. To check a menu item and make it a radio item,
use the CheckMenuRadioItem function.

By default, the system displays a check mark or bullet bitmap next to selected menu
items and no bitmap next to cleared menu items. However, you can use the
SetMenuItemBitmaps function to associate application-defined selected and cleared
bitmaps with a menu item. The system then uses the specified bitmaps to indicate the
menu item's selected or cleared state.

Application-defined bitmaps associated with a menu item must be the same size as the
default check mark bitmap, the dimensions of which may vary depending on screen
resolution. To retrieve the correct dimensions, use the GetSystemMetrics function. You
can create multiple bitmap resources for different screen resolutions; create one bitmap
resource and scale it, if necessary; or create a bitmap at run time and draw an image in it.
The bitmaps may be either monochrome or color. However, because menu items are
inverted when highlighted, the appearance of certain inverted color bitmaps may be
undesirable. For more information, see Bitmaps.

Enabled, Grayed, and Disabled Menu Items

A menu item can be enabled, grayed, or disabled. By default, a menu item is enabled.
When the user chooses an enabled menu item, the system sends a command message to
the owner window or displays the corresponding submenu, depending on what kind of
menu item it is.

When menu items are not available to the user, they should be grayed or disabled. Grayed
and disabled menu items cannot be chosen. A disabled item looks just like an enabled
item. When the user clicks on a disabled item, the item is not selected, and nothing
happens. Disabled items can be useful in, for example, a tutorial that presents a menu that
looks active but isn't.

An application grays an unavailable menu item to provide a visual cue to the user that a
command is not available. You can use a grayed item when an action is not appropriate
(for example, you can gray the Print command in the File menu when the system does not
have a printer installed).

Menu and Dialogs 5

The EnableMenuItem function enables, grays, or disables a menu item. To determine
whether a menu item is enabled, grayed, or disabled, use the GetMenuItemInfo
function.

Instead of GetMenuItemInfo, you can also use the GetMenuState function to determine
whether a menu item is enabled, grayed, or disabled.

Highlighted Menu Items

The system automatically highlights menu items on menus as the user selects them.
However, highlighting can be explicitly added or removed from a menu name on the
menu bar by using the HiliteMenuItem function. This function has no effect on menu
items on menus. When HiliteMenuItem is used to highlight a menu name, though, the
name only appears to be selected. If the user presses the ENTER key, the highlighted
item is not chosen. This feature might be useful in, for example, a training application
that demonstrates the use of menus.

Owner-Drawn Menu Items

An application can completely control the appearance of a menu item by using an owner-
drawn item. Owner-drawn items require an application to take total responsibility for
drawing selected (highlighted), selected, and cleared states. For example, if an
application provided a font menu, it could draw each menu item by using the
corresponding font; the item for Roman would be drawn with roman, the item for Italic
would be drawn in italic, and so on. For more information, see Creating Owner-Drawn
Menu Items.

Menu Item Separators and Line Breaks

The system provides a special type of menu item, called a separator, which appears as a
horizontal line. You can use a separator to divide a menu into groups of related items. A
separator cannot be used in a menu bar, and the user cannot select a separator.

When a menu bar contains more menu names than will fit on one line, the system wraps
the menu bar by automatically breaking it into two or more lines. You can cause a line
break to occur at a specific item on a menu bar by assigning the MFT_MENUBREAK
type flag to the item. The system places that item and all subsequent items on a new line.

When a menu contains more items than will fit in one column, the menu will be
truncated. You can cause a column break to occur at a specific item in a menu by
assigning the MFT_MENUBREAK type flag to the item or using the MENUBREAK
option in the MENUITEM statement. The system places that item and all subsequent
items in a new column. The MFT_MENUBARBREAK type flag has the same effect,
except that a vertical line appears between the new column and the old.

Menu and Dialogs 6

If you use the AppendMenu, InsertMenu, or ModifyMenu functions to assign line breaks,
you should assign the type flags MF_MENUBREAK or MF_MENUBARBREAK.

19.3 Drop Down Menus

Drop down menus are submenu. For example you are working with notepad and you are
going to make a new file, for this you press on a file menu and menu drops itself down
and you select new from that menu, so this menu is called drop down menu. This drop
down menu is called submenu.

19.4 Get Sub Menu

The GetSubMenu function retrieves a handle to the drop-down menu or submenu
activated by the specified menu item.

HMENU GetSubMenu(

 HMENU hMenu,
 int nPos
);

hMenu: Handle to the menu.
nPos: Specifies the zero-based relative position in the specified menu of an item that
activates a drop-down menu or submenu.

Return Value: If the function succeeds, the return value is a handle to the drop-down
menu or submenu activated by the menu item. If the menu item does not activate a drop-
down menu or submenu, the return value is NULL.

19.5 Example Application
Here we create an application which will demonstrate menus.

19.5.1 Popup Menu (Resource File View)
Popup menu is a main menu which may have sub menu.

IDR_MENU_POPUP MENU DISCARDABLE
BEGIN POPUP "Popup Menu"
BEGIN MENUITEM "&Line", ID_POPUPMENU_LINE
 MENUITEM "&Circle", ID_POPUPMENU_CIRCLE

MENUITEM "&Rectangle", ID_POPUPMENU_RECTANGLE
POPUP "&Other"
BEGIN MENUITEM "&Polygon", ID_OTHER_POLYGON

MENUITEM "&Text Message", ID_OTHER_TEXTMESSAGE
END

END

Menu and Dialogs 7

END

19.5.2 The WM_RBUTTONDOWN message

WM_RBUTTONDOWN

 WPARAM wParam
 LPARAM lParam;

wParam

Indicates whether various virtual keys are down. This parameter can be one or
more of the following values.
MK_CONTROL: The CTRL key is down.
MK_LBUTTON: The left mouse button is down.
MK_MBUTTON: The middle mouse button is down.
MK_RBUTTON: The right mouse button is down.
MK_SHIFT: The SHIFT key is down.
MK_XBUTTON1

lParam
The low-order word specifies the x-coordinate of the cursor. The coordinate is
relative to the upper-left corner of the client area.
The high-order word specifies the y-coordinate of the cursor. The coordinate is
relative to the upper-left corner of the client area.

Return Value:

If an application processes this message, it should return zero

19.5.3 Structure to represent Points

POINT structure contains LONG (long)x and LONG y.

typedef struct tagPOINT
{

LONG x; //horizontal number
LONG y; //vertical number

} POINT;

Menu and Dialogs 8

POINTS structure contains SHORT (short) x, and SHORT y

typedef struct tagPOINTS
{

SHORT x; //horizontal short integer
SHORT y; //vertical short integer

} POINTS;

19.5.4 Main Window Procedure

POINTS pts; POINT pt;
… … … …
 case WM_RBUTTONDOWN:

 pts = MAKEPOINTS(lParam);
 pt.x = pts.x;
 pt.y = pts.y;

ClientToScreen(hWnd, &pt); //convert the window coordinates to the screen coordinates

result = TrackPopupMenu(hPopupMenu, TPM_LEFTALIGN | TPM_TOPALIGN |
TPM_RETURNCMD | TPM_LEFTBUTTON,
pt.x, pt.y, 0, hWnd, 0
);

19.5.5 Set Menu Item Information

The SetMenuInfo function sets information for a specified menu.

BOOL SetMenuInfo(

 HMENU hmenu, //handle to the menu
 LPCMENUINFO lpcmi //menu informations
);

hmenu: Handle to a menu.

lpcmi: Pointer to a MENUINFO structure for the menu.

Return Value:

If the function succeeds, the return value is nonzero. If the function fails, the return value
is zero. To get extended error information, call GetLastError.

Menu and Dialogs 9

19.5.6 System Menu

The GetSystemMenu function allows the application to access the window menu (also
known as the system menu or the control menu) for copying and modifying.

HMENU GetSystemMenu(

 HWND hWnd, //handle to the window
 BOOL bRevert //action specification
);

hWnd: Handle to the window that will own a copy of the window menu.

bRevert: Specifies the action to be taken. If this parameter is FALSE, GetSystemMenu
returns a handle to the copy of the window menu currently in use. The copy is initially
identical to the window menu, but it can be modified. If this parameter is TRUE,
GetSystemMenu resets the window menu back to the default state. The previous
window menu, if any, is destroyed.

Return Value: If the bRevert parameter is FALSE, the return value is a handle to a copy
of the window menu. If the bRevert parameter is TRUE, the return value is NULL.

Any window that does not use the GetSystemMenu function to make its own copy of the
window menu receives the standard window menu.

The window menu initially contains items with various identifier values, such as
SC_CLOSE, SC_MOVE, and SC_SIZE.

Menu items on the window menu send WM_SYSCOMMAND messages.

All predefined window menu items have identifier numbers greater than 0xF000. If an
application adds commands to the window menu, it should use identifier numbers less
than 0xF000.

The system automatically grays items on the standard window menu, depending on the
situation. The application can perform its own checking or graying by responding to the
WM_INITMENU message that is sent before any menu is displayed.

19.5.7 System Menu Identifiers

The window menu initially contains items with various identifier values, such as Figure
labelled as

SC_MOVE Move

Menu and Dialogs 10

SC_SIZE Size
SC_CLOSE Close

19.6 Time Differences

There are two time differences are available in windows one is

Local Time -
And
UTC (Universal Coordinated Time) historically GMT (Greenwich Mean Time)

19.7 Time Information in Windows

VOID GetSystemTime(
 LPSYSTEMTIME lpSystemTime // system time
);

This function retrieves the system time in UTC format.

VOID GetLocalTime(
LPSYSTEMTIME lpSystemTime // system time
);

 This function retrieves the current local date and time.

IDR_FIRST_MENU MENU DISCARDABLE
BEGIN

POPUP "&File"
BEGIN
 MENUITEM "E&xit", ID_FILE_EXIT n END
POPUP "F&ormat"
BEGIN
 MENUITEM "&UTC", ID_FORMAT_UTC
 MENUITEM "&Local Time", ID_FORMAT_LOCALTIME
END
END

19.8 Clock Example (Window Procedure)

static SYSTEMTIME st;
 enum Format { UTC, LOCAL };
 static enum Format format;

case WM_CREATE:
 SetTimer(hWnd, ID_TIMER, 1000, NULL);

Menu and Dialogs 11

 format=LOCAL;
 GetLocalTime(&st);
 hOurMenu = GetMenu(hWnd);
 CheckMenuItem(hOurMenu, ID_FORMAT_LOCALTIME,
MF_BYCOMMAND | MF_CHECKED);
Break;

case WM_COMMAND:
 switch(LOWORD(wParam))
 {
 case ID_FORMAT_UTC:
 if(format == UTC)
 break;
 format = UTC;
 hOurMenu = GetMenu(hWnd);
 result = CheckMenuItem(hOurMenu, ID_FORMAT_UTC,
MF_BYCOMMAND | MF_CHECKED);
 result = CheckMenuItem(hOurMenu,
ID_FORMAT_LOCALTIME, MF_BYCOMMAND | MF_UNCHECKED);
 DrawMenuBar(hWnd);
 (format == UTC) ? GetSystemTime(&st) : GetLocalTime(&st);
 GetClientRect(hWnd, &rect);
 InvalidateRect(hWnd, &rect, TRUE);
 break;

case WM_PAINT:
 hDC = BeginPaint(hWnd, &ps);
 wsprintf(msg, "Hour: %2d:%02d:%02d", st.wHour, st.wMinute, st.wSecond);
 TextOut(hDC, 10, 10, msg, lstrlen(msg));
 EndPaint(hWnd, &ps);
 break;

case WM_TIMER:
 if(wParam == ID_TIMER)
 {
 (format == UTC) ? GetSystemTime(&st) : GetLocalTime(&st);
 GetClientRect(hWnd, &rect);
 InvalidateRect(hWnd, &rect, TRUE);
 break;
 }
 break;

Menu and Dialogs 12

19.9 Dialogs

Dialogs are important resource in windows. Most of the information in window are
displayed in dialog boxes. Simple example of dialog boxes is about dialog box or
properties are shown in normally in dialog boxes.

A dialog box is a temporary window an application creates to retrieve user input. An
application typically uses dialog boxes to prompt the user for additional information for
menu items. A dialog box usually contains one or more controls (child windows) with
which the user enters text, chooses options, or directs the action.

Windows also provides predefined dialog boxes that support common menu items such
as Open and Print. Applications that use these menu items should use the common
dialog boxes to prompt for this user input, regardless of the type of application.

Dialogs are of two types.

• Modal Dialog Boxes
• Modeless Dialog Boxes

19.9.1 Modal Dialog Boxes

A modal dialog box should be a pop-up window having a window menu, a title bar, and a
thick border; that is, the dialog box template should specify the WS_POPUP,
WS_SYSMENU, WS_CAPTION, and DS_MODALFRAME styles. Although an
application can designate the WS_VISIBLE style, the system always displays a modal
dialog box regardless of whether the dialog box template specifies the WS_VISIBLE
style. An application must not create a modal dialog box having the WS_CHILD style. A
modal dialog box with this style disables itself, preventing any subsequent input from
reaching the application.

An application creates a modal dialog box by using either the DialogBox or
DialogBoxIndirect function. DialogBox requires the name or identifier of a resource
containing a dialog box template; DialogBoxIndirect requires a handle to a memory
object containing a dialog box template. The DialogBoxParam and
DialogBoxIndirectParam functions also create modal dialog boxes; they are identical to
the previously mentioned functions but pass a specified parameter to the dialog box
procedure when the dialog box is created.

When creating the modal dialog box, the system makes it the active window. The dialog
box remains active until the dialog box procedure calls the EndDialog function or the
system activates a window in another application. Neither the user nor the application can
make the owner window active until the modal dialog box is destroyed.

Menu and Dialogs 13

When the owner window is not already disabled, the system automatically disables the
window and any child windows belonging to it when it creates the modal dialog box. The
owner window remains disabled until the dialog box is destroyed. Although a dialog box
procedure could potentially enable the owner window at any time, enabling the owner
defeats the purpose of the modal dialog box and is not recommended. When the dialog
box procedure is destroyed, the system enables the owner window again, but only if the
modal dialog box caused the owner to be disabled.

As the system creates the modal dialog box, it sends the WM_CANCELMODE
message to the window (if any) currently capturing mouse input. An application that
receives this message should release the mouse capture so that the user can move the
mouse in the modal dialog box. Because the system disables the owner window, all
mouse input is lost if the owner fails to release the mouse upon receiving this message.

To process messages for the modal dialog box, the system starts its own message loop,
taking temporary control of the message queue for the entire application. When the
system retrieves a message that is not explicitly for the dialog box, it dispatches the
message to the appropriate window. If it retrieves a WM_QUIT message, it posts the
message back to the application message queue so that the application's main message
loop can eventually retrieve the message.

The system sends the WM_ENTERIDLE message to the owner window whenever the
application message queue is empty. The application can use this message to carry out a
background task while the dialog box remains on the screen. When an application uses
the message in this way, the application must frequently yield control (for example, by
using the PeekMessage function) so that the modal dialog box can receive any user input.
To prevent the modal dialog box from sending the WM_ENTERIDLE messages, the
application can specify the DS_NOIDLEMSG style when creating the dialog box.

An application destroys a modal dialog box by using the EndDialog function. In most
cases, the dialog box procedure calls EndDialog when the user clicks Close from the
dialog box's window menu or clicks the OK or Cancel button in the dialog box. The
dialog box can return a value through the DialogBox function (or other creation
functions) by specifying a value when calling the EndDialog function. The system
returns this value after destroying the dialog box. Most applications use this return value
to determine whether the dialog box completed its task successfully or was canceled by
the user. The system does not return control from the function that creates the dialog box
until the dialog box procedure has called the EndDialog function.

19.9.2 Modeless Dialog Boxes

A modeless dialog box should be a pop-up window having a window menu, a title bar,
and a thin border; that is, the dialog box template should specify the WS_POPUP,
WS_CAPTION, WS_BORDER, and WS_SYSMENU styles. The system does not
automatically display the dialog box unless the template specifies the WS_VISIBLE
style.

Menu and Dialogs 14

An application creates a modeless dialog box by using the CreateDialog or
CreateDialogIndirect function. CreateDialog requires the name or identifier of a resource
containing a dialog box template; CreateDialogIndirect requires a handle to a memory
object containing a dialog box template. Two other functions, CreateDialogParam and
CreateDialogIndirectParam, also create modeless dialog boxes; they pass a specified
parameter to the dialog box procedure when the dialog box is created.

CreateDialog and other creation functions return a window handle for the dialog box.
The application and the dialog box procedure can use this handle to manage the dialog
box. For example, if WS_VISIBLE is not specified in the dialog box template, the
application can display the dialog box by passing the window handle to the
ShowWindow function.

A modeless dialog box neither disables the owner window nor sends messages to it.
When creating the dialog box, the system makes it the active window, but the user or the
application can change the active window at any time. If the dialog box does become
inactive, it remains above the owner window in the Z order, even if the owner window is
active.

The application is responsible for retrieving and dispatching input messages to the dialog
box. Most applications use the main message loop for this. To permit the user to move to
and select controls by using the keyboard, however, the application must call the
IsDialogMessage function. For more information about this function, see Dialog Box
Keyboard Interface.

A modeless dialog box cannot return a value to the application as a modal dialog box
does, but the dialog box procedure can send information to the owner window by using
the SendMessage function.

An application must destroy all modeless dialog boxes before terminating. It can destroy
a modeless dialog box by using the DestroyWindow function. In most cases, the dialog
box procedure calls DestroyWindow in response to user input, such as clicking the
Cancel button. If the user never closes the dialog box in this way, the application must
call DestroyWindow.

DestroyWindow invalidates the window handle for the dialog box, so any subsequent
calls to functions that use the handle return error values. To prevent errors, the dialog box
procedure should notify the owner that the dialog box has been destroyed. Many
applications maintain a global variable containing the handle for the dialog box. When
the dialog box procedure destroys the dialog box, it also sets the global variable to
NULL, indicating that the dialog box is no longer valid.

The dialog box procedure must not call the EndDialog function to destroy a modeless
dialog box.

Menu and Dialogs 15

19.9.3 Message Box Function

A message box is a special dialog box that an application can use to display messages and
prompt for simple input. A message box typically contains a text message and one or
more buttons. An application creates the message box by using the MessageBox or
MessageBoxEx function, specifying the text and the number and types of buttons to
display. Note that currently there is no difference between how MessageBox and
MessageBoxEx work.

Although the message box is a dialog box, the system takes complete control of the
creation and management of the message box. This means the application does not
provide a dialog box template and dialog box procedure. The system creates its own
template based on the text and buttons specified for the message box and supplies its own
dialog box procedure.

A message box is a modal dialog box and the system creates it by using the same internal
functions that DialogBox uses. If the application specifies an owner window when
calling MessageBox or MessageBoxEx, the system disables the owner. An application
can also direct the system to disable all top-level windows belonging to the current thread
by specifying the MB_TASKMODAL value when creating the dialog box.

The system can send messages to the owner, such as WM_CANCELMODE and
WM_ENABLE, just as it does when creating a modal dialog box. The owner window
should carry out any actions requested by these messages.

19.9.4 Modal Loop
Modal loop is run by Modal dialogs and process message as does application message
loop. That’s why program execution is transfer to modal loop so the modal loop itself
gets messages and dispatch message.

19.9.5 Dialog Resource Template

IDD_DIALOG_ABOUT DIALOG DISCARDABLE 0, 0, 265, 124
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "About"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK",IDOK,208,7,50,14
 PUSHBUTTON "Cancel",IDCANCEL,208,24,50,14
 LTEXT "Some copyright text", IDC_STATIC,
 67, 27,107,47
 ICON IDI_ICON_VU,IDC_STATIC,17,14,20,20
END

Menu and Dialogs 16

19.9.6 Creating a Modal Dialog

Modal Dialog runs the dialog modal loop. And handle all the messages in message queue.

INT_PTR DialogBox(
 HINSTANCE hInstance, // handle to module
 LPCTSTR lpTemplate, // dialog box template
 HWND hWndParent, // handle to owner window
 DLGPROC lpDialogFunc // dialog box procedure
);

Summary
 In this lecture, we studied about menus and dialogs. Dialogs are another useful
and multipurpose resource in windows. Dialogs are used to display temporary
information and other data. Dialogs are of two types: One is modal dialogs and second is
modeless dialogs. Modal dialogs do not return control to the application until they are not
ended or destroyed. Modeless dialogs act like a normal windows they return control after
they have created. Message boxes are normally modal dialog boxes.

Exercises
1. Create a Modeless dialog box. On pressing the mouse left button on the client

area of the Modeless dialog, another modal dialog should appear. And after
pressing the right mouse button on the dialog a text name ‘Exercise’ should be
displayed.

Chapter 20

20.1 DIALOG BOX TEMPLATES 2
20.1.1 DIALOG BOX TEMPLATES STYLES 2
20.1.2 DIALOG BOX MEASUREMENTS 5
20.1.3 DIALOG BOX CONTROLS 6
20.1.4 DIALOG BOX WINDOW MENU 7
20.1.5 DIALOG BOX FONTS 8
20.1.6 TEMPLATES IN MEMORY 8
Template Header 9
Control Definitions 9
20.2 WHEN TO USE A DIALOGBOX 10
20.3 DIALOG BOX OWNER WINDOW 11
20.4 CREATING MODAL DIALOG 12
20.5 DIALOG PROCEDURE 13
20.6 THE WM_INITDIALOG MESSAGE 14
20.7 USING DIALOG PROCEDURE 15
20.8 SCREEN SHOT OF ABOUT MODAL DIALOG 15
20.9 DIALOG BOX MESSAGES AND FUNCTIONS 16
20.9.1 RETRIEVE HANDLE OF THE CONTROL 16
20.9.2 SET WINDOW TEXT 16
20.9.3 RETRIEVE THE IDENTIFIER OF THE SPECIFIED CONTROL 17
20.9.4 RETRIEVE THE TEXT ASSOCIATED WITH THE SPECIFIED CONTROL IN DIALOG 17
20.9.5 SENDS A MESSAGE TO THE SPECIFIED CONTROL IN A DIALOG BOX 18
20.9.6 SETTING OR GETTING TEXT ASSOCIATED WITH A WINDOW OR CONTROL 19
20.9.7 SET OR RETRIEVE CURRENT SELECTION IN AN EDIT CONTROL 20
20.10 CREATING MODELESS DIALOG 20
20.10.1 SHOWING MODELESS DIALOG 21
20.10.2 PROCESSING DIALOG MESSAGES 23
20.10.3 MESSAGE LOOP TO DISPATCH MESSAGES TO A MODELESS DIALOG 23
20.11 WINDOWS COMMON DIALOGS 24
20.11.1 OPEN FILE DIALOG 24
20.11.2 CHOOSE FONT DIALOG 25
20.11.3 CHOOSE COLOR DIALOG 25
20.11.4 PRINT DIALOG 26
SUMMARY 26
EXERCISES 26

Dialogs 2

20.1 Dialog Box Templates

A dialog box template is binary data that describes the dialog box, defining its height,
width, style, and the controls it contains. To create a dialog box, the system either loads a
dialog box template from the resources in the application's executable file or uses the
template passed to it in global memory by the application. In either case, the application
must supply a template when creating a dialog box.

A developer creates template resources by using a resource compiler or a dialog box
editor. A resource compiler converts a text description into a binary resource, and a
dialog box editor saves an interactively constructed dialog box as a binary resource.

To create a dialog box without using template resources, you must create a template in
memory and pass it to the CreateDialogIndirectParam or DialogBoxIndirectParam
function, or to the CreateDialogIndirect or DialogBoxIndirect macro.

A dialog box template in memory consists of a header that describes the dialog box,
followed by one or more additional blocks of data that describe each of the controls in the
dialog box. The template can use either the standard format or the extended format. In a
standard template, the header is a DLGTEMPLATE structure followed by additional
variable-length arrays; and the data for each control consists of a DLGITEMTEMPLATE
structure followed by additional variable-length arrays. In an extended dialog box
template, the header uses the DLGTEMPLATEEX format and the control definitions use
the DLGITEMTEMPLATEEX format.

You can create a memory template by allocating a global memory object and filling it
with the standard or extended header and control definitions. A memory template is
identical in form and content to a template resource. Many applications that use memory
templates first use the LoadResource function to load a template resource into memory,
and then modify the loaded resource to create a new memory template.

20.1.1 Dialog Box Templates Styles

Every dialog box template specifies a combination of style values that define the
appearance and features of the dialog box. The style values can be window styles, such as
WS_POPUP and WS_SYSMENU, and dialog box styles, such as DS_MODALFRAME.
The number and type of styles for a template depends on the type and purpose of the
dialog box.

The system passes all window styles specified in the template to the CreateWindowEx
function when creating the dialog box. The system may pass one or more extended styles
depending on the specified dialog box styles. For example, when the template specifies
DS_MODALFRAME, the system uses WS_EX_DLGMODALFRAME when creating
the dialog box.

Dialogs 3

Most dialog boxes are pop-up windows that have a window menu and a title bar.
Therefore, the typical template specifies the WS_POPUP, WS_SYSMENU, and
WS_CAPTION styles. The template also specifies a border style: WS_BORDER for
modeless dialog boxes and DS_MODALFRAME for modal dialog boxes. A template
may specify a window type other than pop-up (such as WS_OVERLAPPED) if it creates
a customized window instead of a dialog box.

The system always displays a modal dialog box regardless of whether the WS_VISIBLE
style is specified. When the template for a modeless dialog box specifies the
WS_VISIBLE style, the system automatically displays the dialog box when it is created.
Otherwise, the application is responsible for displaying the dialog box by using the
ShowWindow function.

The following table lists the dialog box styles that you can specify when you create a
dialog box. You can use these styles in calls to the CreateWindow and
CreateWindowEx functions, in the style member of the DLGTEMPLATE and
DLGTEMPLATEEX structures, and in the statement of a dialog box definition in a
resource file.

Value Meaning

DS_3DLOOK

Gives the dialog box a non-bold font, and draws three-
dimensional borders around control windows in the dialog box.

The DS_3DLOOK style is required only by applications
compiled for Windows NT 3.51. The system automatically
applies the three-dimensional look to dialog boxes created by
applications compiled for Windows 95/98/Me and later
versions of Windows NT.

DS_ABSALIGN
Indicates that the coordinates of the dialog box are screen
coordinates. If this style is not specified, the coordinates are
client coordinates.

DS_CENTER

Centers the dialog box in the working area of the monitor that
contains the owner window. If no owner window is specified,
the dialog box is centered in the working area of a monitor
determined by the system. The working area is the area not
obscured by the taskbar or any application bars.

DS_CENTERMOUSE Centers the dialog box on the mouse cursor.

DS_CONTEXTHELP

Includes a question mark in the title bar of the dialog box.
When the user clicks the question mark, the cursor changes to
a question mark with a pointer. If the user then clicks a control
in the dialog box, the control receives a WM_HELP message.
The control should pass the message to the dialog box
procedure, which should call the function using the
HELP_WM_HELP command. The help application displays a
pop-up window that typically contains help for the control.

Dialogs 4

Note that DS_CONTEXTHELP is only a placeholder. When
the dialog box is created, the system checks for
DS_CONTEXTHELP and, if it is there, adds
WS_EX_CONTEXTHELP to the extended style of the dialog
box. WS_EX_CONTEXTHELP cannot be used with the
WS_MAXIMIZEBOX or WS_MINIMIZEBOX styles.

DS_CONTROL

Creates a dialog box that works well as a child window of
another dialog box, much like a page in a property sheet. This
style allows the user to tab among the control windows of a
child dialog box, use its accelerator keys, and so on.

DS_FIXEDSYS

Causes the dialog box to use the SYSTEM_FIXED_FONT
instead of the default SYSTEM_FONT. This is a mono-space
font compatible with the System font in 16-bit versions of
Windows earlier than 3.0.

DS_LOCALEDIT

Applies to 16-bit applications only. This style directs edit
controls in the dialog box to allocate memory from the
application's data segment. Otherwise, edit controls allocate
storage from a global memory object.

DS_MODALFRAME
Creates a dialog box with a modal dialog-box frame that can
be combined with a title bar and window menu by specifying
the WS_CAPTION and WS_SYSMENU styles.

DS_NOFAILCREATE

Windows 95/98/Me: Creates the dialog box even if errors
occur — for example, if a child window cannot be created or if
the system cannot create a special data segment for an edit
control.

DS_NOIDLEMSG
Suppresses WM_ENTERIDLE messages that the system
would otherwise send to the owner of the dialog box while the
dialog box is displayed.

DS_SETFONT

Indicates that the header of the dialog box template (either
standard or extended) contains additional data specifying the
font to use for text in the client area and controls of the dialog
box. If possible, the system selects a font according to the
specified font data. The system passes a handle to the font to
the dialog box and to each control by sending them the
WM_SETFONT message. For descriptions of the format of
this font data, see DLGTEMPLATE and
DLGTEMPLATEEX.

If neither DS_SETFONT nor DS_SHELLFONT is specified,
the dialog box template does not include the font data.

DS_SETFOREGROUND
Causes the system to use the SetForegroundWindow function
to bring the dialog box to the foreground. This style is useful
for modal dialog boxes that require immediate attention from

Dialogs 5

the user regardless of whether the owner window is the
foreground window.

DS_SHELLFONT

Indicates that the dialog box should use the system font. The
typeface member of the extended dialog box template must be
set to MS Shell Dialog. Otherwise, this style has no effect. It is
also recommended that you use the DIALOGEX Resource,
rather than the DIALOG Resource.

The system selects a font using the font data specified in the
pointsize, weight, and italic members. The system passes a
handle to the font to the dialog box and to each control by
sending them the WM_SETFONT message. For descriptions
of the format of this font data, see DLGTEMPLATEEX.

If neither DS_SHELLFONT nor DS_SETFONT is specified,
the extended dialog box template does not include the font
data.

DS_SYSMODAL

This style is obsolete and is included for compatibility with 16-
bit versions of Windows. If you specify this style, the system
creates the dialog box with the WS_EX_TOPMOST style.
This style does not prevent the user from accessing other
windows on the desktop.

Do not combine this style with the DS_CONTROL style.

20.1.2 Dialog Box Measurements

Every dialog box template contains measurements that specify the position, width, and
height of the dialog box and the controls it contains. These measurements are device
independent, so an application can use a single template to create the same dialog box for
all types of display devices. This ensures that a dialog box will have the same proportions
and appearance on all screens despite differing resolutions and aspect ratios between
screens.

The measurements in a dialog box template are specified in dialog template units. To
convert measurements from dialog template units to screen units (pixels), use the
MapDialogRect function, which takes into account the font used by the dialog box and
correctly converts a rectangle from dialog template units into pixels. For dialog boxes
that use the system font, you can use the GetDialogBaseUnits function to perform the
conversion calculations yourself, although using MapDialogRect is simpler.

The template must specify the initial coordinates of the upper left corner of the dialog
box. Usually the coordinates are relative to the upper left corner of the owner window's
client area. When the template specifies the DS_ABSALIGN style or the dialog box has
no owner, the position is relative to the upper left corner of the screen. The system sets

Dialogs 6

this initial position when creating the dialog box, but permits an application to adjust the
position before displaying the dialog box. For example, an application can retrieve the
dimensions of the owner window, calculate a new position that centers the dialog box in
the owner window, and then set the position by using the SetWindowPos function.

The template should specify a dialog box width and height that does not exceed the width
and height of the screen and ensures that all controls are within the client area of the
dialog box. Although the system permits a dialog box to be any size, creating one that is
too small or too large can prevent the user from providing input, defeating the purpose of
the dialog box. Many applications use more than one dialog box when there are a large
number of controls. In such cases, the initial dialog box usually contains one or more
buttons that the user can choose to display the next dialog box.

20.1.3 Dialog Box Controls

The template specifies the position, width, height, style, identifier, and window class for
each control in the dialog box. The system creates each control by passing this data to the
CreateWindowEx function. Controls are created in the order they are specified in the
template. The template should specify the appropriate number, type, and order of controls
to ensure that the user can enter the input needed to complete the task associated with the
dialog box.

For each control, the template specifies style values that define the appearance and
operation of the control. Every control is a child window and therefore must have the
WS_CHILD style. To ensure that the control is visible when the dialog box is displayed,
each control must also have the WS_VISIBLE style. Other commonly used window
styles are WS_BORDER for controls that have optional borders, WS_DISABLED for
controls that should be disabled when the dialog box is initially created, and
WS_TABSTOP and WS_GROUP for controls that can be accessed using the keyboard.
The WS_TABSTOP and WS_GROUP styles are used in conjunction with the dialog
keyboard interface described later in this topic.

The template may also specify control styles specific to the control's window class. For
example, a template that specifies a button control must give a button control style such
as BS_PUSHBUTTON or BS_CHECKBOX. The system passes the control styles to the
control window procedure through the WM_CREATE message, allowing the procedure
to adapt the appearance and operation of the control.

The system converts the position coordinates and the width and height measurements
from dialog base units to pixels, before passing these to CreateWindowEx. When the
system creates a control, it specifies the dialog box as the parent window. This means the
system always interprets the position coordinates of the control as client coordinates,
relative to the upper left corner of the dialog box's client area.

The template specifies the window class for each control. Typical dialog box contains
controls belonging to the predefined control window classes such as the button and edit

Dialogs 7

control window classes. In this case, the template specifies window classes by supplying
the corresponding predefined atom values for the classes. When a dialog box contains a
control belonging to a custom control window class, the template gives the name of that
registered window class or the atom value currently associated with the name.

Each control in a dialog box must have a unique identifier to distinguish it from other
controls. Controls send information to the dialog box procedure through
WM_COMMAND messages, so the control identifiers are essential for the procedure to
determine which control sent a specified message. The only exception to this rule is
control identifiers for static controls. Static controls do not require unique identifiers
because they send no WM_COMMAND messages.

To permit the user to close the dialog box, the template should specify at least one push
button and give it the control identifier IDCANCEL. To permit the user to choose
between completing or canceling the task associated with the dialog box, the template
should specify two push buttons, labeled OK and Cancel, with control identifiers of
IDOK and IDCANCEL, respectively.

A template also specifies optional text and creation data for a control. The text typically
provides labels for button controls or specifies the initial content of a static text control.
The creation data is one or more bytes of data that the system passes to the control
window procedure when creating the control. Creation data is useful for controls that
require more information about their initial content or style than is specified by other
data. For example, an application can use creation data to set the initial setting and range
for a scroll bar control.

20.1.4 Dialog Box Window Menu

The system gives a dialog box a window menu when the template specifies the
WS_SYSMENU style. To prevent inappropriate input, the system automatically disables
all items in the menu except Move and Close. The user can click Move to move the
dialog box. When the user clicks Close, the system sends a WM_COMMAND message
to the dialog box procedure with the wParam parameter set to IDCANCEL. This is
identical to the message sent by the Cancel button when the user clicks it. The
recommended action for this message is to close the dialog box and cancel the requested
task.

Although other menus in dialog boxes are not recommended, a dialog box template can
specify a menu by supplying the identifier or the name of a menu resource. In this case,
the system loads the resource and creates the menu for the dialog box. Applications
typically use menu identifiers or names in templates when using the templates to create
custom windows rather than dialog boxes.

Dialogs 8

20.1.5 Dialog Box Fonts

The system uses the average character width of the dialog box font to calculate the
position and dimensions of the dialog box. By default, the system draws all text in a
dialog box using the SYSTEM_FONT font.

To specify a font for a dialog box other than the default, you must create the dialog box
using a dialog box template. In a template resource, use the FONT Statement. In a dialog
box template, set the DS_SETFONT or DS_SHELLFONT style and specify a point size
and a typeface name. Even if a dialog box template specifies a font in this manner, the
system always uses the system font for the dialog box title and dialog box menus.

When the dialog box has the DS_SETFONT or DS_SHELLFONT style, the system
sends a WM_SETFONT message to the dialog box procedure and to each control as it
creates the control. The dialog box procedure is responsible for saving the font handle
passed with the WM_SETFONT message and selecting the handle into the display
device context whenever it writes text to the window. Predefined controls do this by
default.

The system font can vary between different versions of Windows. To have your
application use the system font no matter which system it is running on, use
DS_SHELLFONT with the typeface MS Shell Dlg, and use the DIALOGEX Resource
instead of the DIALOG Resource. The system maps this typeface such that your dialog
box will use the Tahoma font on Windows 2000/Windows XP, and the MS Sans Serif
font on earlier systems.

Note that DS_SHELLFONT has no effect if the typeface is not MS Shell Dlg.

20.1.6 Templates in Memory

A dialog box template in memory consists of a header that describes the dialog box,
followed by one or more additional blocks of data that describe each of the controls in the
dialog box. The template can use either the standard format or the extended format. In a
standard template, the header is a DLGTEMPLATE structure followed by additional
variable-length arrays. The data for each control consists of a DLGITEMTEMPLATE
structure followed by additional variable-length arrays. In an extended dialog box
template, the header uses the DLGTEMPLATEEX format and the control definitions
use the DLGITEMTEMPLATEEX format.

To distinguish between a standard template and an extended template, check the first 16-
bits of a dialog box template. In an extended template, the first WORD is 0xFFFF; any
other value indicates a standard template.

If you create a dialog template in memory, you must ensure that the each of the
DLGITEMTEMPLATE or DLGITEMTEMPLATEEX control definitions is aligned
on DWORD boundaries. In addition, any creation data that follows a control definition

Dialogs 9

must be aligned on a DWORD boundary. All of the other variable-length arrays in a
dialog box template must be aligned on WORD boundaries.

Template Header

In both the standard and extended templates for dialog boxes, the header includes the
following general information:

• The location and dimensions of the dialog box
• The window and dialog box styles for the dialog box
• The number of controls in the dialog box. This value determines the number of

DLGITEMTEMPLATE or DLGITEMTEMPLATEEX control definitions in
the template.

• An optional menu resource for the dialog box. The template can indicate that the
dialog box does not have a menu, or it can specify an ordinal value or null-
terminated Unicode string that identifies a menu resource in an executable file.

• The window class of the dialog box. This can be either the predefined dialog box
class, or an ordinal value or null-terminated Unicode string that identifies a
registered window class.

• A null-terminated Unicode string that specifies the title for the dialog box
window. If the string is empty, the title bar of the dialog box is blank. If the dialog
box does not have the WS_CAPTION style, the system sets the title to the
specified string but does not display it.

• If the dialog box has the DS_SETFONT style, the header specifies the point size
and typeface name of the font to use for the text in the client area and controls of
the dialog box.

In an extended template, the DLGTEMPLATEEX header also specifies the following
additional information:

• The help context identifier of the dialog box window when the system sends a
WM_HELP message.

• If the dialog box has the DS_SETFONT or DS_SHELLFONT style, the header
specifies the font weight and indicates whether the font is italic.

Control Definitions

Following the template header is one or more control definitions that describe the
controls of the dialog box. In both the standard and extended templates, the dialog box
header has a member that indicates the number of control definitions in the template. In a
standard template, each control definition consists of a DLGITEMTEMPLATE
structure followed by additional variable-length arrays. In an extended template, the
control definitions use the DLGITEMTEMPLATEEX format.

In both the standard and extended templates, the control definition includes the following
information:

Dialogs 10

• The location and dimensions of the control.
• The window and control styles for the control.
• The control identifier.
• The window class of the control. This can be either the ordinal value of a

predefined system class or a null-terminated Unicode string that specifies the
name of a registered window class.

• A null-terminated Unicode string that specifies the initial text of the control, or an
ordinal value that identifies a resource, such as an icon, in an executable file.

• An optional variable-length block of creation data. When the system creates the
control, it passes a pointer to this data in the lParam parameter of the
WM_CREATE message that it sends to the control.

In an extended template, the control definition also specifies a help context identifier for
the control when the system sends a WM_HELP message.

20.2 When to Use a DialogBox

Most applications use dialog boxes to prompt for additional information for menu items
that require user input. Using a dialog box is the only recommended way for an
application to retrieve the input. For example, a typical Open menu item requires the
name of a file to open, so an application should use a dialog box to prompt the user for
the name. In such cases, the application creates the dialog box when the user clicks the
menu item and destroys the dialog box immediately after the user supplies the
information.

Many applications also use dialog boxes to display information or options while the user
works in another window. For example, word processing applications often use a dialog
box with a text-search option. While the application searches for the text, the dialog box
remains on the screen. The user can then return to the dialog box and search for the same
word again; or the user can change the entry in the dialog box and search for a new word.
Applications that use dialog boxes in this way typically create one when the user clicks
the menu item and continue to display it for as long as the application runs or until the
user explicitly closes the dialog box.

To support the different ways applications use dialog boxes, there are two types of dialog
box: modal and modeless. A modal dialog box requires the user to supply information or
cancel the dialog box before allowing the application to continue. Applications use modal
dialog boxes in conjunction with menu items that require additional information before
they can proceed. A modeless dialog box allows the user to supply information and return
to the previous task without closing the dialog box. Modal dialog boxes are simpler to
manage than modeless dialog boxes because they are created, perform their task, and are
destroyed by calling a single function.

To create either a modal or modeless dialog box, an application must supply a dialog box
template to describe the dialog box style and content; the application must also supply a
dialog box procedure to carry out tasks. The dialog box template is a binary description

Dialogs 11

of the dialog box and the controls it contains. The developer can create this template as a
resource to be loaded from the application's executable file, or created in memory while
the application runs. The dialog box procedure is an application-defined callback
function that the system calls when it has input for the dialog box or tasks for the dialog
box to carry out. Although a dialog box procedure is similar to a window procedure, it
does not have the same responsibilities.

An application typically creates a dialog box by using either the DialogBox or
CreateDialog function. DialogBox creates a modal dialog box; CreateDialog creates a
modeless dialog box. These two functions load a dialog box template from the
application's executable file and create a pop-up window that matches the template's
specifications. There are other functions that create a dialog box by using templates in
memory; they pass additional information to the dialog box procedure as the dialog box is
created.

Dialog boxes usually belong to a predefined, exclusive window class. The system uses
this window class and its corresponding window procedure for both modal and modeless
dialog boxes. When the function is called, it creates the window for the dialog box as
well as the windows for the controls in the dialog box, and then sends selected messages
to the dialog box procedure. While the dialog box is visible, the predefined window
procedure manages all messages, processing some messages and passing others to the
dialog box procedure so that the procedure can carry out tasks. Applications do not have
direct access to the predefined window class or window procedure, but they can use the
dialog box template and dialog box procedure to modify the style and behavior of a
dialog box.

20.3 Dialog Box Owner window

Most dialog boxes have an owner window (or more simply, an owner). When creating the
dialog box, the application sets the owner by specifying the owner's window handle. The
system uses the owner to determine the position of the dialog box in the Z order so that
the dialog box is always positioned above its owner. Also, the system can send messages
to the window procedure of the owner, notifying it of events in the dialog box.

The system automatically hides or destroys the dialog box whenever its owner is hidden
or destroyed. This means the dialog box procedure requires no special processing to
detect changes to the state of the owner window.

Because the typical dialog box is used in conjunction with a menu item, the owner
window is usually the window containing the menu. Although it is possible to create a
dialog box that has no owner, it is not recommended. For example, when a modal dialog
box has no owner, the system does not disable any of the application's other windows and
allows the user to continue to carry out work in the other windows, defeating the purpose
of the modal dialog box.

Dialogs 12

When a modeless dialog box has no owner, the system neither hides nor destroys the
dialog box when other windows in the application are hidden or destroyed. Although this
does not defeat the purpose of the modeless dialog box, it requires that the application
carry out special processing to ensure the dialog box is hidden and destroyed at
appropriate times.

20.4 Creating Modal Dialog

The DialogBoxParam function creates a modal dialog box from a dialog box template
resource. Before displaying the dialog box, the function passes an application-defined
value to the dialog box procedure as the lParam parameter of the WM_INITDIALOG
message. An application can use this value to initialize dialog box controls.

INT_PTR DialogBoxParam(

 HINSTANCE hInstance, //handle to the istance
 LPCTSTR lpTemplateName, //name of the template*/
 HWND hWndParent, //parent handle if any*/
 DLGPROC lpDialogFunc, //dialog function
procedure*/
 LPARAM dwInitParam /*initialize parameters*/
);

hInstance: Handle to the module whose executable file contains the dialog box template.

lpTemplateName: Specifies the dialog box template. This parameter is either the pointer
to a null-terminated character string that specifies the name of the dialog box template or
an integer value that specifies the resource identifier of the dialog box template. If the
parameter specifies a resource identifier, its high-order word must be zero and its low-
order word must contain the identifier. You can use the MAKEINTRESOURCE macro to
create this value.

hWndParent: Handle to the window that owns the dialog box.

lpDialogFunc: Pointer to the dialog box procedure. For more information about the
dialog box procedure, see DialogProc.

dwInitParam: Specifies the value to pass to the dialog box in the lParam parameter of the
WM_INITDIALOG message.

Return Value: If the function succeeds, the return value is the value of the nResult
parameter specified in the call to the EndDialog function used to terminate the dialog
box.

If the function fails because the hWndParent parameter is invalid, the return value is zero.
The function returns zero in this case for compatibility with previous versions of

Dialogs 13

Microsoft® Windows®. If the function fails for any other reason, the return value is –1.
To get extended error information, call GetLastError.

The DialogBoxParam function uses the CreateWindowEx function to create the dialog
box. DialogBoxParam then sends a WM_INITDIALOG message (and a
WM_SETFONT message if the template specifies the DS_SETFONT or
DS_SHELLFONT style) to the dialog box procedure. The function displays the dialog
box (regardless of whether the template specifies the WS_VISIBLE style), disables the
owner window, and starts its own message loop to retrieve and dispatch messages for the
dialog box.

When the dialog box procedure calls the EndDialog function, DialogBoxParam destroys
the dialog box, ends the message loop, enables the owner window (if previously enabled),
and returns the nResult parameter specified by the dialog box procedure when it called
EndDialog.

20.5 Dialog Procedure

The DialogProc function is an application-defined callback function used with the
CreateDialog and DialogBox families of functions. It processes messages sent to a modal
or modeless dialog box. The DLGPROC type defines a pointer to this callback function.
DialogProc is a placeholder for the application-defined function name.

INT_PTR CALLBACK DialogProc(

 HWND hwndDlg, //handle to the dialog
 UINT uMsg, //message structure
 WPARAM wParam, //wParam
 LPARAM lParam //lParam
);

hwndDlg: Handle to the dialog box.

uMsg: Specifies the message.

wParam: Specifies additional message-specific information.

lParam: Specifies additional message-specific information.

Return Value: Typically, the dialog box procedure should return TRUE if it processed the
message, and FALSE if it did not. If the dialog box procedure returns FALSE, the dialog
manager performs the default dialog operation in response to the message.

If the dialog box procedure processes a message that requires a specific return value, the
dialog box procedure should set the desired return value by calling
SetWindowLong(hwndDlg, DWL_MSGRESULT, lResult) immediately before returning

Dialogs 14

TRUE. Note that you must call SetWindowLong immediately before returning TRUE;
doing so earlier may result in the DWL_MSGRESULT value being overwritten by a
nested dialog box message.

You should use the dialog box procedure only if you use the dialog box class for the
dialog box. This is the default class and is used when no explicit class is specified in the
dialog box template. Although the dialog box procedure is similar to a window
procedure, it must not call the DefWindowProc function to process unwanted messages.
Unwanted messages are processed internally by the dialog box window procedure.

20.6 The WM_INITDIALOG Message

The WM_INITDIALOG message is sent to the dialog box procedure immediately
before a dialog box is displayed. Dialog box procedures typically use this message to
initialize controls and carry out any other initialization tasks that affect the appearance of
the dialog box.

WM_INITDIALOG

 WPARAM wParam
 LPARAM lParam;

wParam

Handle to the control to receive the default keyboard focus. The system assigns
the default keyboard focus only if the dialog box procedure returns TRUE.

lParam
Specifies additional initialization data. This data is passed to the system as the
lParam parameter in a call to the CreateDialogIndirectParam,
CreateDialogParam, DialogBoxIndirectParam, or DialogBoxParam function used
to create the dialog box. For property sheets, this parameter is a pointer to the
PROPSHEETPAGE structure used to create the page. This parameter is zero if
any other dialog box creation function is used.

Return Value:

The dialog box procedure should return TRUE to direct the system to set the
keyboard focus to the control specified by wParam. Otherwise, it should return
FALSE to prevent the system from setting the default keyboard focus.

The dialog box procedure should return the value directly. The
DWL_MSGRESULT value set by the SetWindowLong function is ignored.

The control to receive the default keyboard focus is always the first control in the dialog
box that is visible, not disabled, and that has the WS_TABSTOP style. When the dialog
box procedure returns TRUE, the system checks the control to ensure that the procedure

Dialogs 15

has not disabled it. If it has been disabled, the system sets the keyboard focus to the next
control that is visible, not disabled, and has the WS_TABSTOP.

An application can return FALSE only if it has set the keyboard focus to one of the
controls of the dialog box.

20.7 Using Dialog Procedure

BOOL CALLBACK AboutAuthorDialog(HWND hDlg, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch(message)
 {
 case WM_INITDIALOG:
 return TRUE;
 case WM_COMMAND:
 switch(LOWORD(wParam))
 {
 case IDOK:
 case IDCANCEL:
 EndDialog(hDlg, 0);
 return TRUE;
 }
 break;
 }
 return FALSE;
}

20.8 Screen Shot of About Modal Dialog

Dialogs 16

20.9 Dialog Box Messages and functions

Following are the description of dialog box functions.

20.9.1 Retrieve handle of the control

The GetDlgItem function retrieves a handle to a control in the specified dialog box.

HWND GetDlgItem(

 HWND hDlg,
 int nIDDlgItem
);

hDlg

[in] Handle to the dialog box that contains the control.
nIDDlgItem

[in] Specifies the identifier of the control to be retrieved.

Return Value:

If the function succeeds, the return value is the window handle of the specified
control.
If the function fails, the return value is NULL, indicating an invalid dialog box
handle or a nonexistent control. To get extended error information, call
GetLastError.

You can use the GetDlgItem function with any parent-child window pair, not just with
dialog boxes. As long as the hDlg parameter specifies a parent window and the child
window has a unique identifier (as specified by the hMenu parameter in the
CreateWindow or CreateWindowEx function that created the child window),
GetDlgItem returns a valid handle to the child window.

20.9.2 Set Window Text

The SetWindowText function changes the text of the specified window's title bar (if it
has one). If the specified window is a control, the text of the control is changed.
However, SetWindowText cannot change the text of a control in another application.

BOOL SetWindowText(

 HWND hWnd,
 LPCTSTR lpString
);

Dialogs 17

hWnd: Handle to the window or control whose text is to be changed.
lpString: Pointer to a null-terminated string to be used as the new title or control text.

Return Value:

If the function succeeds, the return value is nonzero.

If the target window is owned by the current process, SetWindowText causes a
WM_SETTEXT message to be sent to the specified window or control. If the control is a
list box control created with the WS_CAPTION style, however, SetWindowText sets the
text for the control, not for the list box entries.

To set the text of a control in another process, send the WM_SETTEXT message
directly instead of calling SetWindowText.

The SetWindowText function does not expand tab characters (ASCII code 0x09). Tab
characters are displayed as vertical bar (|) characters.

20.9.3 Retrieve the identifier of the specified control

The GetDlgCtrlID function retrieves the identifier of the specified control.

int GetDlgCtrlID(

 HWND hwndCtl /*handle to the control whose id is
required*/
);
hwndCtl: Handle to the control.

Return Value

If the function succeeds, the return value is the identifier of the control.

GetDlgCtrlID accepts child window handles as well as handles of controls in dialog
boxes. An application sets the identifier for a child window when it creates the window
by assigning the identifier value to the hmenu parameter when calling the CreateWindow
or CreateWindowEx function.

Although GetDlgCtrlID may return a value if hwndCtl is a handle to a top-level window,
top-level windows cannot have identifiers and such a return value is never valid.

20.9.4 Retrieve the text associated with the specified control in Dialog

The GetDlgItemText function retrieves the title or text associated with a control in a
dialog box.

Dialogs 18

UINT GetDlgItemText(

 HWND hDlg, /*handle to the dialog*/
 int nIDDlgItem, /*id of the control */
 LPTSTR lpString, /*text data*/
 int nMaxCount /*maximum limit of the text*/
);
hDlg: Handle to the dialog box that contains the control.

nIDDlgItem: Specifies the identifier of the control whose title or text is to be retrieved.

lpString: Pointer to the buffer to receive the title or text.

nMaxCount: Specifies the maximum length, in TCHARs, of the string to be copied to
the buffer pointed to by lpString. If the length of the string, including the NULL
character, exceeds the limit, the string is truncated.

Return Value:

If the function succeeds, the return value specifies the number of TCHARs
copied to the buffer, not including the terminating NULL character.

If the function fails, the return value is zero. To get extended error information,
call GetLastError.

If the string is as long as or longer than the buffer, the buffer will contain the truncated
string with a terminating NULL character.

The GetDlgItemText function sends a WM_GETTEXT message to the control.

For the ANSI version of the function, the number of TCHARs is the number of bytes; for
the Unicode version, it is the number of characters.

20.9.5 Sends a message to the specified control in a dialog box

The SendDlgItemMessage function sends a message to the specified control in a dialog
box.

LRESULT SendDlgItemMessage(

 HWND hDlg, /*handle to the dialog*/
 int nIDDlgItem, /*id of the dialog item*/
 UINT Msg, /*message type*/
 WPARAM wParam, /*message wParam*/
 LPARAM lParam /*message lParam*/
);

Dialogs 19

hDlg: Handle to the dialog box that contains the control.

nIDDlgItem: Specifies the identifier of the control that receives the message.

Msg: Specifies the message to be sent.

wParam: Specifies additional message-specific information.

lParam: Specifies additional message-specific information.

Return Value:

The return value specifies the result of the message processing and depends on the
message sent.

The SendDlgItemMessage function does not return until the message has been
processed.

Using SendDlgItemMessage is identical to retrieving a handle to the specified control
and calling the SendMessage function.

Example

In this example we send a message to edit control of EM_LIMITTEXT. This message
will limit the text to the given number say 25 in our case. Edit control will not receive
more than this limit.

EM_LIMITTEXT
wParam, // text length
lParam // not used; must be zero
//Sets the text limit of an edit control

//This message is sent by sendDlgItemMessage function.
SendDlgItemMessage(hEdit, EM_LIMITTEXT, (WPARAM)25, (LPARAM)0);

20.9.6 Setting or getting text associated with a window or control

WM_GETTEXT
wParam, // number of characters to copy
lParam // text buffer

Get Text Message retrieve the text associated with the window. This text could be a
caption text on any window or the text displayed in edit controls.
WM_SETTEXT
wParam, // not used; must be zero
lParam // window-text string (LPCTSTR)

Dialogs 20

Set Text set the text in window.

GetWindowText() function internally sends a WM_GETTEXT message to get the text.
SetWindowText() function internally sends a WM_SETTEXT message to set the text.

20.9.7 Set or retrieve current selection in an edit control
Setting or getting the current selection in an edit control we use two message
EM_SETSEL and EM_GETSEL.

EM_SETSEL or EM_GETSEL
wParam, // starting position
lParam // ending position

20.10 Creating Modeless Dialog

In our previous lecture, we have studied Modeless dialogs. Here we will create the
modeless dialogs.
Modeless dialogs are created with CreateDialog function.
HWND CreateDialog(

 HINSTANCE hInstance, /*handle to the instance*/
 LPCTSTR lpTemplate, /*template name*/
 HWND hWndParent, /*handle to the parent*/
 DLGPROC lpDialogFunc /*dialog function*/
);

hInstance: Handle to the module whose executable file contains the dialog box template.

lpTemplate: Specifies the dialog box template. This parameter is either the pointer to a
null-terminated character string that specifies the name of the dialog box template or an
integer value that specifies the resource identifier of the dialog box template. If the
parameter specifies a resource identifier, its high-order word must be zero and its low-
order word must contain the identifier. You can use the MAKEINTRESOURCE macro to
create this value.
hWndParent: Handle to the window that owns the dialog box.

lpDialogFunc: Pointer to the dialog box procedure.

Return Value:

If the function succeeds, the return value is the handle to the dialog box.
If the function fails, the return value is NULL. To get extended error information,
call GetLastError.

The CreateDialog function uses the CreateWindowEx function to create the dialog box.
CreateDialog, then sends a WM_INITDIALOG message (and a WM_SETFONT

Dialogs 21

message if the template specifies the DS_SETFONT or DS_SHELLFONT style) to the
dialog box procedure. The function displays the dialog box if the template specifies the
WS_VISIBLE style. Finally, CreateDialog returns the window handle to the dialog box.

After CreateDialog returns, the application displays the dialog box (if it is not already
displayed) by using the ShowWindow function. The application destroys the dialog box
by using the DestroyWindow function. To support keyboard navigation and other dialog
box functionality, the message loop for the dialog box must call the IsDialogMessage
function.

20.10.1 Showing Modeless Dialog

Modeless dialogs are initially hidden unless their property of visibility is not set.

For showing Dialog we can use ShowWindow function, which can show any window
created in Windows.

BOOL ShowWindow(

 HWND hWnd, /*handle to the window*/
 int nCmdShow /*show style*/
);

hWnd: Handle to the window.
nCmdShow: Specifies how the window is to be shown. This parameter is ignored the first
time an application calls ShowWindow, if the program that launched the application
provides a STARTUPINFO structure. Otherwise, the first time ShowWindow is called,
the value should be the value obtained by the WinMain function in its nCmdShow
parameter. In subsequent calls, this parameter can be one of the following values.

SW_HIDE: Hides the window and activates another window.

SW_MAXIMIZE: Maximizes the specified window.

SW_MINIMIZE: Minimizes the specified window and activates the next top-level
window in the Z order.
SW_RESTORE: Activates and displays the window. If the window is minimized or
maximized, the system restores it to its original size and position. An application
should specify this flag when restoring a minimized window.

SW_SHOW: Activates the window and displays it in its current size and position.

SW_SHOWDEFAULT: Sets the show state based on the SW_ value specified in the
STARTUPINFO structure passed to the CreateProcess function by the program that
started the application.

Dialogs 22

SW_SHOWMAXIMIZED: Activates the window and displays it as a maximized
window.

SW_SHOWMINIMIZED: Activates the window and displays it as a minimized
window.

SW_SHOWMINNOACTIVE: Displays the window as a minimized window. This
value is similar to SW_SHOWMINIMIZED, except the window is not activated.

SW_SHOWNA: Displays the window in its current size and position. This value is
similar to SW_SHOW, except the window is not activated.

SW_SHOWNOACTIVATE: Displays a window in its most recent size and position.
This value is similar to SW_SHOWNORMAL, except the window is not active.

SW_SHOWNORMAL: Activates and displays a window. If the window is minimized
or maximized, the system restores it to its original size and position. An application
should specify this flag when displaying the window for the first time.

Return Value

If the window was previously visible, the return value is nonzero.
If the window was previously hidden, the return value is zero.

To perform certain special effects when showing or hiding a window, use
AnimateWindow.

The first time an application calls ShowWindow, it should use the WinMain function's
nCmdShow parameter as its nCmdShow parameter. Subsequent calls to ShowWindow
must use one of the values in the given list, instead of the one specified by the WinMain
function's nCmdShow parameter.

As noted in the discussion of the nCmdShow parameter, the nCmdShow value is ignored
in the first call to ShowWindow if the program that launched the application specifies
startup information in the structure. In this case, ShowWindow uses the information
specified in the STARTUPINFO structure to show the window. On subsequent calls, the
application must call ShowWindow with nCmdShow set to SW_SHOWDEFAULT to
use the startup information provided by the program that launched the application. This
behavior is designed for the following situations:

• Applications create their main window by calling CreateWindow with the
WS_VISIBLE flag set.

• Applications create their main window by calling CreateWindow with the
WS_VISIBLE flag cleared, and later call ShowWindow with the SW_SHOW
flag set to make it visible.

Dialogs 23

20.10.2 Processing Dialog Messages

The IsDialogMessage function determines whether a message is intended for the
specified dialog box and, if it is, processes the message.

BOOL IsDialogMessage(

 HWND hDlg, /*handle to the dialog*/
 LPMSG lpMsg /*message structure */
);

hDlg: Handle to the dialog box.

lpMsg: Pointer to an MSG structure that contains the message to be checked.

Return Value:

If the message has been processed, the return value is nonzero.
If the message has not been processed, the return value is zero.

Although the IsDialogMessage function is intended for modeless dialog boxes, you can
use it with any window that contains controls, enabling the windows to provide the same
keyboard selection as is used in a dialog box.

When IsDialogMessage processes a message, it checks for keyboard messages and
converts them into selections for the corresponding dialog box. For example, the TAB
key, when pressed, selects the next control or group of controls, and the DOWN
ARROW key, when pressed, selects the next control in a group. Because the
IsDialogMessage function performs all necessary translating and dispatching of
messages, a message processed by IsDialogMessage must not be passed to the
TranslateMessage or DispatchMessage function.

IsDialogMessage sends WM_GETDLGCODE messages to the dialog box procedure to
determine which keys should be processed.

IsDialogMessage can send DM_GETDEFID and DM_SETDEFID messages to the
window. These messages are defined in the Winuser.h header file as WM_USER and
WM_USER + 1, so conflicts are possible with application-defined messages having the
same values.

20.10.3 Message Loop to dispatch messages to a modeless dialog

While(GetMessage(&msg, NULL, 0, 0) > 0)

/*get message from the queue and check its validity, it should be greater than zero*/
{

Dialogs 24

/*check if this is the dialog message otherwise send it to the window procedure*/

 if(!IsDialogMessage(hDlg, &msg))
 {
 /*translate message before dispatching it*/
 TranslateMessage(&msg);
 /*now dispatch to the window procedure*/
 DispatchMessage(&msg);
 }
}

Modeless dialogs can be destroyed by calling DestroyWindow function.

20.11 Windows Common Dialogs

Windows common dialogs are of the following types.

20.11.1 Open File Dialog

Dialogs 25

20.11.2 Choose Font Dialog

20.11.3 Choose Color Dialog

Dialogs 26

20.11.4 Print Dialog

Summary

A dialog box template is binary data that describes the dialog box, defining its
height, width, style, and the controls it contains. Dialog box template becomes later part
of the executable file. Dialogs are of two types: Modal dialogs and Modeless dialogs. For
dispatching message for Modeless dialogs, we can use IsDialogMessage Function in our
main Message Loop. In windows lot of common dialogs are available. Print dialog is
used to print the document, this dialog show the setting for printer and its path name.
Choose color dialog help the user to choose the color of its own choice. File Open dialog
are useful to open and save the files on disk.

Exercises
1. Create a notepad like window and facilitate the user to save and open the text in a

file. For saving the file use open file and save file dialog.

Chapter 21

21.1 WINDOWS COMMON DIALOGS 2
21.2 DIALOG UNITS 2
21.3 TAB STOPS, TAB ORDER, GROUPS 3
21.4 EDIT CONTROL 3
21.4.1 EDIT CONTROL FEATURES 3
21.4.2 EDIT CONTROL NOTIFICATION MESSAGES 3
21.4.3 EDIT CONTROL DEFAULT MESSAGE PROCESSING 4
21.5 BUTTON 10
21.5.1 BUTTON TYPES AND STYLES 10
CHECK BOXES 10
GROUP BOXES 11
OWNER DRAWN BUTTONS 11
PUSH BUTTONS 11
RADIO BUTTONS 12
21.5.2 NOTIFICATION MESSAGES FROM BUTTON 12
21.5.3 BUTTON DEFAULT MESSAGE PROCESSING 13
21.6 LIST BOX 15
21.6.1 LIST BOX TYPES AND STYLES 16
21.6.2 NOTIFICATION MESSAGES FROM LIST BOXES 18
21.6.3 MESSAGES TO LIST BOXES 18
21.7 EXAMPLE APPLICATION 21
21.7.1 MODELESS DIALOGS 21
21.7.2 CHOOSE COLOR DIALOGS 21
21.7.3 ABOUT DIALOGS 22
21.7.4 CREATING WINDOWS USED IN APPLICATION 22
21.7.5 CREATING DIALOGS 22
21.7.6 MESSAGE LOOP 23
21.7.7 MENU COMMAND 23
21.7.8 COMMAND DIALOG PROCEDURE 24
21.7.9 MESSAGES USED IN OUR APPLICATION 25
21.7.10 THE WM_CTRLCOLORSTATIC MESSAGE 25
SUMMARY 26
EXERCISES 26

Using Dialogs and Windows Controls 2

21.1 Windows Common Dialogs
In our previous lecture, we have viewed common dialogs and in this lecture we will learn
to use them. Following are the Windows common dialog names and the functions that
create these common dialogs.

• Choose color:
o For creating the color dialog we use function

ChooseColor(&CHOOSCOLOR). This function inputs CHOOSCOLOR
structure and create the color dialog.

• Find:

o FindText(&FINDREPLACE) function create the find text dialog. This
dialog helps to find and replace text in text document. This function inputs
FINDREPLACE structure.

• Choose font:

o ChooseFont(&CHOOSEFONT) function create a Choose Font dialog.
This dialog helps choose the font from installed system fonts. This
function inputs CHOOSEFONT structure.

• Open File:

o GetOpenFilename(&OPENFILENAM) function creates a dialog that lets
the user specify the drive, directory, and the name of a file or set of files to
open.

• Print

o PrintDlg() function open dialog which help to print the document.

• Save As:
o GetSaveFilename(&OPENFILENAM) function open a file dialog which

help to save a file on the drive

21.2 Dialog Units

Dialog Unit (DLU): A unit of horizontal or vertical distance within a dialog box. A
horizontal DLU is the average width of the current dialog box font divided by 4. A
vertical DLU is the average height of the current dialog-box font divided by 8.
Dialogs Units have also explained in our previous lectures.

Using Dialogs and Windows Controls 3

21.3 Groups and Focus

• WS_GROUP style specifies the first control of a group of controls in which the
user can move from one control to the next with the arrow keys. All controls
defined with the WS_GROUP style FALSE after the first control belongs to the
same group. The next control with the WS_GROUP style starts the next group
(that is, one group ends where the next begins)

• Focus: for setting focus on any control in dialog the SetFocus and GetFocus

functions are used.

21.4 Edit Control

Dialog boxes and controls support communication between applications and their users.
An edit control is a rectangular control window typically used in a dialog box to permit
the user to enter and edit text by typing on the keyboard.

21.4.1 Edit Control Features

An edit control is selected and receives the input focus when a user clicks the mouse
inside it or presses the TAB key. After it is selected, the edit control displays its text (if
any) and a flashing caret that indicates the insertion point. The user can then enter text,
move the insertion point, or select text to be edited by using the keyboard or the mouse.
An edit control can send notification messages to its parent window in the form of
WM_COMMAND messages. A parent window can send messages to an edit control in a
dialog box by calling the SendDlgItemMessage function.

The system provides both single-line edit controls (sometimes called SLEs) and multiline
edit controls (sometimes called MLEs). Edit controls belong to the EDIT window class.

A combo box is a control that combines much of the functionality of an edit control and a
list box. In a combo box, the edit control displays the current selection and the list box
presents options a user can select. Many developers use the dialog boxes provided in the
common dialog box library (Comdlg32.dll) to perform tasks that otherwise might require
customized edit controls.

21.4.2 Edit Control Notification Messages

The user makes editing requests by using the keyboard and mouse. The system sends
each request to the edit control's parent window in the form of a WM_COMMAND
message. The message includes the edit control identifier in the low-order word of the
wParam parameter, the handle of the edit control in the lParam parameter, and an edit

Using Dialogs and Windows Controls 4

control notification message corresponding to the user's action in the high-order word of
the wParam parameter.

An application should examine each notification message and respond appropriately. The
following table lists each edit control notification message and the action that generates
it.

Notification
message User action

EN_CHANGE The user has modified text in an edit control. The system updates the
display before sending this message (unlike EN_UPDATE).

EN_ERRSPACE The edit control cannot allocate enough memory to meet a specific
request.

EN_HSCROLL The user has clicked the edit control's horizontal scroll bar. The
system sends this message before updating the screen.

EN_KILLFOCUS The user has selected another control.

EN_MAXTEXT

While inserting text, the user has exceeded the specified number of
characters for the edit control. Insertion has been truncated. This
message is also sent either when an edit control does not have the
ES_AUTOHSCROLL style and the number of characters to be
inserted exceeds the width of the edit control or when an edit control
does not have the ES_AUTOVSCROLL style and the total number of
lines to be inserted exceeds the height of the edit control.

EN_SETFOCUS The user has selected this edit control.

EN_UPDATE

The user has altered the text in the edit control and the system is about
to display the new text. The system sends this message after
formatting the text, but before displaying it, so that the application
can resize the edit control window.

EN_VSCROLL
The user has clicked the edit control's vertical scroll bar or has
scrolled the mouse wheel over the edit control. The system sends this
message before updating the screen.

In addition, the system sends a WM_CTLCOLOREDIT message to an edit control's
parent window before the edit control is drawn. This message contains a handle of the
edit control's display context (DC) and a handle of the child window. The parent window
can use these handles to change the edit control's text and background colors.

21.4.3 Edit Control Default Message Processing

The window procedure for the predefined edit control window class carries out default
processing for all messages that the edit control procedure does not process. When the
edit control procedure returns FALSE for any message, the predefined window procedure
checks the messages and carries out the following default actions.

Using Dialogs and Windows Controls 5

Message Default action

EM_CANUNDO Returns TRUE if the edit control operation can be
undone.

EM_CHARFROMPOS Returns the character index and line index of the
character nearest the specified point.

EM_EMPTYUNDOBUFFER

Empties the undo buffer and sets the undo flag retrieved
by the EM_CANUNDO message to FALSE. The
system automatically clears the undo flag whenever the
edit control receives a WM_SETTEXT or
EM_SETHANDLE message.

EM_FMTLINES

Adds or removes soft line-break characters (two carriage
returns and a line feed) to the ends of wrapped lines in a
multiline edit control. It is not processed by single-line
edit controls.

EM_GETFIRSTVISIBLELINE

Returns the zero-based index of the first visible
character in a single-line edit control or the zero-based
index of the uppermost visible line in a multiline edit
control.

EM_GETHANDLE
Returns a handle identifying the buffer containing the
multiline edit control's text. It is not processed by single-
line edit controls.

EM_GETLIMITTEXT Returns the current text limit, in characters.

EM_GETLINE

Copies characters in a single-line edit control to a buffer
and returns the number of characters copied. In a
multiline edit control, retrieves a line of text from the
control and returns the number of characters copied.

EM_GETLINECOUNT Returns the number of lines in the edit control.
EM_GETMARGINS Returns the widths of the left and right margins.

EM_GETMODIFY Returns a flag indicating whether the content of an edit
control has been modified.

EM_GETPASSWORDCHAR Returns the character that edit controls use in
conjunction with the ES_PASSWORD style.

EM_GETRECT Returns the coordinates of the formatting rectangle in an
edit control.

EM_GETSEL Returns the starting and ending character positions of
the current selection in the edit control.

EM_GETTHUMB Returns the position of the scroll box in the vertical
scroll bar in a multiline edit control.

EM_GETWORDBREAKPROC Returns the address of the current Wordwrap function in
an edit control.

EM_LINEFROMCHAR Returns the zero-based number of the line in a multiline
edit control that contains a specified character index.

Using Dialogs and Windows Controls 6

This message is the reverse of the EM_LINEINDEX
message. It is not processed by single-line edit controls.

EM_LINEINDEX

Returns the character of a line in a multiline edit control.
This message is the reverse of the
EM_LINEFROMCHAR message. It is not processed
by single-line edit controls.

EM_LINELENGTH
Returns the length, in characters, of a single-line edit
control. In a multiline edit control, returns the length, in
characters, of a specified line.

EM_LINESCROLL

Scrolls the text vertically in a single-line edit control or
horizontally in a multiline edit control (when the control
has the ES_LEFT style). The lParam parameter
specifies the number of lines to scroll vertically, starting
from the current line. The wParam parameter specifies
the number of characters to scroll horizontally, starting
from the current character.

EM_POSFROMCHAR Returns the client coordinates of the specified character.

EM_REPLACESEL

Replaces the current selection with the text in an
application-supplied buffer, sends the parent window
EN_UPDATE and EN_CHANGE messages, and
updates the undo buffer.

EM_SCROLL

Scrolls the text vertically in a multiline edit control. This
message is equivalent to sending a WM_VSCROLL
message to the edit control. It is not processed by single-
line edit controls.

EM_SCROLLCARET Scrolls the caret into view in an edit control.
EM_SETFONT Unsupported.

EM_SETHANDLE
Sets a handle to the memory used as a text buffer,
empties the undo buffer, resets the scroll positions to
zero, and redraws the window.

EM_SETLIMITTEXT

Sets the maximum number of characters the user may
enter in the edit control.

Windows NT/2000/XP: For single-line edit controls,
this value is either 0x7FFFFFFE or the value of the
wParam parameter, whichever is smaller. For multiline
edit controls, this value is either –1 or the value of the
wParam parameter, whichever is smaller.

Windows 95/98/Me: For single-line edit controls, this
value is either 0x7FFE or the value of the wParam
parameter, whichever is smaller. For multiline edit
controls, this value is either 0xFFFF or the value of the
wParam parameter, whichever is smaller.

Using Dialogs and Windows Controls 7

EM_SETMARGINS Sets the widths of the left and right margins, and
redraws the edit control to reflect the new margins.

EM_SETMODIFY Sets or clears the modification flag to indicate whether
the edit control has been modified.

EM_SETPASSWORDCHAR Defines the character that edit controls use in
conjunction with the ES_PASSWORD style.

EM_SETREADONLY Sets or removes the read-only style (ES_READONLY)
in an edit control.

EM_SETRECT
Sets the formatting rectangle for the multiline edit
control and redraws the window. It is not processed by
single-line edit controls.

EM_SETRECTNP
Sets the formatting rectangle for the multiline edit
control but does not redraw the window. It is not
processed by single-line edit controls.

EM_SETSEL Selects a range of characters in the edit control by
setting the starting and ending positions to be selected.

EM_SETTABSTOPS Sets tab-stop positions in the multiline edit control. It is
not processed by single-line edit controls.

EM_SETWORDBREAKPROC Replaces the default Wordwrap function with an
application-defined Wordwrap function.

EM_UNDO

Removes any text that was just inserted or inserts any
deleted characters and sets the selection to the inserted
text. If necessary, sends the EN_UPDATE and
EN_CHANGE notification messages to the parent
window.

WM_CHAR

Writes a character to the single-line edit control and
sends the EN_UPDATE and EN_CHANGE
notification messages to the parent window. Writes a
character to the multiline edit control. Handles the
accelerator keys for standard functions, such as
CTRL+C for copying and CTRL+V for pasting. In
multiline edit controls, also processes TAB, and
CTRL+TAB keystrokes to move among the controls in
a dialog box and to insert tabs into multiline edit
controls. Uses the MessageBeep function for illegal
characters.

WM_CLEAR

Clears the current selection, if any, in an edit control. If
there is no current selection, deletes the character to the
right of the caret. If the user presses the SHIFT key, this
cuts the selection to the clipboard, or deletes the
character to the left of the caret when there is no
selection. If the user presses the CTRL key, this deletes
the selection, or deletes to the end of the line when there
is no selection.

Using Dialogs and Windows Controls 8

WM_COPY
Copies text to the clipboard unless the style is
ES_PASSWORD, in which case the message returns
zero.

WM_CREATE Creates the edit control and notifies the parent window
with TRUE for success or –1 for failure.

WM_CUT Cuts the selection to the clipboard, or deletes the
character to the left of the cursor if there is no selection.

WM_ENABLE
Causes the rectangle to be redrawn in gray for single-
line edit controls. Returns the enabled state for single-
line and multiline edit controls.

WM_ERASEBKGND Fills the multiline edit control window with the current
color of the edit control.

WM_GETDLGCODE

Returns the following values: DLGC_WANTCHARS,
DLGC_HASSETSEL, and DLGC_WANTARROWS.
In multiline edit controls, it also returns
DLGC_WANTALLKEYS. If the user presses
ALT+BACKSPACE, it also returns
DLGC_WANTMESSAGE.

WM_GETFONT Returns the handle of the font being used by the control,
or NULL if the control uses the system font.

WM_GETTEXT Copies the specified number of characters to a buffer
and returns the number of characters copied.

WM_GETTEXTLENGTH
Returns the length, in characters, of the text in an edit
control. The length does not include the null-
terminating character.

WM_HSCROLL Scrolls the text in a multiline edit control horizontally
and handles scroll box movement.

WM_KEYDOWN Performs standard processing of the virtual-key codes.

WM_KILLFOCUS

Removes the keyboard focus of an edit control window,
destroys the caret, hides the current selection, and
notifies the parent window that the edit control has lost
the focus.

WM_LBUTTONDBLCLK
Clears the current selection and selects the word under
the cursor. If the SHIFT key is depressed, extends the
selection to the word under the cursor.

WM_LBUTTONDOWN

Changes the current insertion point. If the SHIFT key is
depressed, extends the selection to the position of the
cursor. In multiline edit controls, also sets the timer to
automatically scroll when the user holds down the
mouse button outside the multiline edit control window.

WM_LBUTTONUP
Releases the mouse capture and sets the text insertion
point in the single-line edit control. In a multiline edit
control, also kills the timer set in the

Using Dialogs and Windows Controls 9

WM_LBUTTONDOWN message.

WM_MOUSEMOVE

Changes the current selection in the single-line edit
control, if the mouse button is down. In a multiline edit
controls, also sets the timer to automatically scroll if the
user holds down the mouse button outside the multiline
edit control window.

WM_NCCREATE
Pointer to the CREATESTRUCT structure for the
window. This message is sent to the WM_CREATE
message when a window is first created.

WM_NCDESTROY
Frees all memory associated with the edit control
window, including the text buffer, undo buffer, tab-stop
buffer, and highlight brush.

WM_PAINT

Erases the background, fills the window with the current
color of the edit control window, draws the border (if
any), sets the font and draws any text, and shows the
text-insertion caret.

WM_PASTE Pastes text from the clipboard into the edit control
window at the caret position.

WM_SETFOCUS
Sets the keyboard focus of an edit control window
(shows the current selection, if it was hidden, and
creates the caret).

WM_SETFONT Sets the font and optionally redraws the edit control.

WM_SETTEXT

Copies text to the single-line edit control, notifies the
parent window when there is insufficient memory,
empties the undo buffer, and sends the EN_UPDATE
and EN_CHANGE notification messages to the parent
window. In multiline edit controls, also rewraps the
lines (if necessary) and sets the scroll positions.

WM_SIZE
Changes the size of the edit control window and ensures
that the minimum size accommodates the height and
width of a character.

WM_SYSCHAR Returns TRUE if the user presses ALT+BACKSPACE;
otherwise takes no action.

WM_SYSKEYDOWN Undoes the last action if the user presses
ALT+BACKSPACE; otherwise takes no action.

WM_TIMER
Scrolls the text in the edit control window if the user
holds down the mouse button outside the multiline edit
control window.

WM_UNDO

Removes any text that was just inserted or inserts any
deleted characters and sets the selection to the inserted
text. If necessary, sends the EN_UPDATE and
EN_CHANGE notification messages to the parent
window.

Using Dialogs and Windows Controls 10

WM_VSCROLL
Scrolls a multiline edit control vertically and handles
scroll box movement. It is not processed by single-line
edit controls.

The predefined edit control window procedure passes all other messages to the
DefWindowProc function for default processing.

21.5 Button

A button is a control the user can click to provide input to an application.

21.5.1 Button Types and Styles

There are five styles of a button:

• Check Boxes
• Group Boxes
• Owner Drawn Buttons
• Push Buttons
• Radio Buttons

Check Boxes

A check box consists of a square box and application-defined text (label), an icon, or a
bitmap, that indicates a choice the user can make by selecting the button. Applications
typically display check boxes in a group box to permit the user to choose from a set of
related, but independent options. For example, an application might present a group of
check boxes from which the user can select error conditions that produce warning beeps.

A check box can be one of four styles: standard, automatic, three-state, and automatic
three-state, as defined by the constants BS_CHECKBOX, BS_AUTOCHECKBOX,
BS_3STATE, and BS_AUTO3STATE, respectively. Each style can assume two check
states: checked (a check mark inside the box) or cleared (no check mark). In addition, a
three-state check box can assume an indeterminate state (a grayed box inside the check
box). Repeatedly clicking a standard or automatic check box toggles it from checked to
cleared and back again. Repeatedly clicking a three-state check box toggles it from
checked to cleared to indeterminate and back again.

When the user clicks a check box (of any style), the check box receives the keyboard
focus. The system sends the check box's parent window a WM_COMMAND message
containing the BN_CLICKED notification code. The parent window doesn't
acknowledge this message if it comes from an automatic check box or automatic three-
state check box, because the system automatically sets the check state for those styles.
But the parent window must acknowledge the message if it comes from a check box or
three-state check box because the parent window is responsible for setting the check state

Using Dialogs and Windows Controls 11

for those styles. Regardless of the check box style, the system automatically repaints the
check box once its state is changed.

Group Boxes

A group box is a rectangle that surrounds a set of controls, such as check boxes or radio
buttons, with application-defined text (label) in its upper left corner. The sole purpose of
a group box is to organize controls related by a common purpose (usually indicated by
the label). The group box has only one style, defined by the constant BS_GROUPBOX.
Because a group box cannot be selected, it has no check state, focus state, or push state.
An application cannot send messages to a group box.

Owner Drawn Buttons

Unlike radio buttons, an owner-drawn button is painted by the application, not by the
system, and has no predefined appearance or usage. Its purpose is to provide a button
whose appearance and behavior are defined by the application alone. There is only one
owner-drawn button style: BS_OWNERDRAW.

When the user selects an owner-drawn button, the system sends the button's parent
window a WM_COMMAND message containing the BN_CLICKED notification code,
just as it does for a button that is not owner-drawn. The application must respond
appropriately.

Push Buttons

A push button is a rectangle containing application-defined text (label), an icon, or a
bitmap that indicates what the button does when the user selects it. A push button can be
one of two styles: standard or default, as defined by the constants BS_PUSHBUTTON
and BS_DEFPUSHBUTTON. A standard push button is typically used to start an
operation. It receives the keyboard focus when the user clicks it. A default push button,
on the other hand, is typically used to indicate the most common or default choice. It is a
button that the user can select by simply pressing ENTER when a dialog box has the
input focus.

When the user clicks a push button (of either style), it receives the keyboard focus. The
system sends the button's parent window a WM_COMMAND message that contains the
BN_CLICKED notification code. In response, the dialog box typically closes and carries
out the operation indicated by the button.

The default push button cannot be a check box, a radio button, or an ownerdraw button at
the same time.

Using Dialogs and Windows Controls 12

Radio Buttons

A radio button consists of a round button and application-defined text (a label), an icon,
or a bitmap that indicates a choice the user can make by selecting the button. An
application typically uses radio buttons in a group box to permit the user to choose from a
set of related, but mutually exclusive options. For example, the application might present
a group of radio buttons from which the user can select a format preference for text
selected in the client area. The user could select a left-aligned, right-aligned, or centered
format by selecting the corresponding radio button. Typically, the user can select only
one option at a time from a set of radio buttons.

A radio button can be one of two styles: standard or automatic, as defined by the
constants BS_RADIOBUTTON and BS_AUTORADIOBUTTON. Each style can
assume two check states: checked (a dot in the button) or cleared (no dot in the button).
Repeatedly selecting a radio button (standard or automatic) toggles it from checked to
cleared and back again.

When the user selects either state, the radio button receives the keyboard focus. The
system sends the button's parent window a WM_COMMAND message containing the
BN_CLICKED notification code. The parent window doesn't acknowledge this message
if it comes from an automatic radio button because the system automatically sets the
check state for that style. But the parent window should acknowledge the message if it
comes from a radio button because the parent window is responsible for setting the check
state for that style. Regardless of the radio button style, the system automatically repaints
the button as its state changes.

When the user selects an automatic radio button, the system automatically sets the check
state of all other radio buttons within the same group to clear. The same behavior is
available for standard radio buttons by using the WS_GROUP style, as discussed in
Dialog Boxes.

21.5.2 Notification Messages from Button

When the user clicks a button, its state changes, and the button sends notification
messages to its parent window. For example, a push button control sends the
BN_CLICKED notification message whenever the user chooses the button. In all cases
(except for BCN_HOTITEMCHANGE), the low-order word of the wParam parameter
contains the control identifier, the high-order word of wParam contains the notification
code, and the lParam parameter contains the control window handle.

Both the message and the parent window's response depend on the type, style, and
current state of the button. Following are the button notification messages an application
should monitor and process.

Using Dialogs and Windows Controls 13

Message Description

BCN_HOTITEMCHANGE Microsoft® Windows® XP: The mouse entered or
left the client area of a button.

BN_CLICKED The user clicked a button.
BN_DBLCLK or
BN_DOUBLECLICKED The user double-clicked a button.

BN_DISABLE A button is disabled.
BN_PUSHED or BN_HILITE The user pushed a button.
BN_KILLFOCUS The button lost the keyboard focus.
BN_PAINT The button should be painted.
BN_SETFOCUS The button gained the keyboard focus.
BN_UNPUSHED or
BN_UNHILITE The button is no longer pushed.

A button sends the BN_DISABLE, BN_PUSHED, BN_KILLFOCUS, BN_PAINT,
BN_SETFOCUS, and BN_UNPUSHED notification messages only if it has the
BS_NOTIFY style. BN_DBLCLK notification messages are sent automatically for
BS_USERBUTTON, BS_RADIOBUTTON, and BS_OWNERDRAW buttons. Other
button types send BN_DBLCLK only if they have the BS_NOTIFY style. All buttons
send the BN_CLICKED notification message regardless of their button styles.

For automatic buttons, the system changes the push state and paints the button. In this
case, the application typically processes only the BN_CLICKED and BN_DBLCLK
notification messages. For buttons that are not automatic, the application typically
responds to the notification message by sending a message to change the state of the
button.

When the user selects an owner-drawn button, the button sends its parent window a
WM_DRAWITEM message containing the identifier of the control to be drawn and
information about its dimensions and state.

21.5.3 Button Default Message Processing

The window procedure for the predefined button control window class carries out default
processing for all messages that the button control procedure does not process. When the
button control procedure returns FALSE for any message, the predefined window
procedure checks the messages and performs the default actions listed in the following
table.

Using Dialogs and Windows Controls 14

Message Default action

BM_CLICK
Sends the button a WM_LBUTTONDOWN and a
WM_LBUTTONUP message, and sends the parent window a
BN_CLICKED notification message.

BM_GETCHECK Returns the check state of the button.

BM_GETIMAGE Returns a handle to the bitmap or icon associated with the button
or NULL if the button has no bitmap or icon.

BM_GETSTATE Returns the current check state, push state, and focus state of the
button.

BM_SETCHECK
Sets the check state for all styles of radio buttons and check boxes.
If the wParam parameter is greater than zero for radio buttons, the
button is given the WS_TABSTOP style.

BM_SETIMAGE Associates the specified bitmap or icon handle with the button and
returns a handle to the previous bitmap or icon.

BM_SETSTATE
Sets the push state of the button. For owner-drawn buttons, a
WM_DRAWITEM message is sent to the parent window if the
state of the button has changed.

BM_SETSTYLE Sets the button style. If the low-order word of the lParam
parameter is TRUE, the button is redrawn.

WM_CHAR
Checks a check box or automatic check box when the user presses
the plus (+) or equal (=) keys. Clears a check box or automatic
check box when the user presses the minus (–) key.

WM_ENABLE Paints the button.

WM_ERASEBKGND
Erases the background for owner-drawn buttons. The backgrounds
of other buttons are erased as part of the WM_PAINT and
WM_ENABLE processing.

WM_GETDLGCODE Returns values indicating the type of input processed by the
default button procedure, as shown in the following table.

Button style Returns

BS_AUTOCHECKBOX DLGC_WANTCHARS | DLGC_BUTTON
BS_AUTORADIOBUTTON DLGC_RADIOBUTTON
BS_CHECKBOX DLGC_WANTCHARS | DLGC_BUTTON
BS_DEFPUSHBUTTON DLGC_DEFPUSHBUTTON
BS_GROUPBOX DLGC_STATIC
BS_PUSHBUTTON DLGC_UNDEFPUSHBUTTON
BS_RADIOBUTTON DLGC_RADIOBUTTON

Using Dialogs and Windows Controls 15

Message Default action
WM_GETFONT Returns a handle to the current font.
WM_KEYDOWN Pushes the button if the user presses the SPACEBAR.
WM_KEYUP Releases the mouse capture for all cases except the TAB key.

WM_KILLFOCUS

Removes the focus rectangle from a button. For push buttons
and default push buttons, the focus rectangle is invalidated. If
the button has the mouse capture, the capture is released, the
button is not clicked, and any push state is removed.

WM_LBUTTONDBLCLK

Sends a BN_DBLCLK notification message to the parent
window for radio buttons and owner-drawn buttons. For
other buttons, a double-click is processed as a
WM_LBUTTONDOWN message.

WM_LBUTTONDOWN Highlights the button if the position of the mouse cursor is
within the button's client rectangle.

WM_LBUTTONUP Releases the mouse capture if the button had the mouse
capture.

WM_MOUSEMOVE
Performs the same action as WM_LBUTTONDOWN, if the
button has the mouse capture. Otherwise, no action is
performed.

WM_NCCREATE Turns any BS_OWNERDRAW button into a
BS_PUSHBUTTON button.

WM_NCHITTEST Returns HTTRANSPARENT, if the button control is a group
box.

WM_PAINT Draws the button according to its style and current state.

WM_SETFOCUS
Draws a focus rectangle on the button getting the focus. For
radio buttons and automatic radio buttons, the parent window
is sent a BN_CLICKED notification message.

WM_SETFONT Sets a new font and optionally updates the window.

WM_SETTEXT
Sets the text of the button. In the case of a group box, the
message paints over the preexisting text before repainting the
group box with the new text.

WM_SYSKEYUP Releases the mouse capture for all cases except the TAB key.

The predefined window procedure passes all other messages to the DefWindowProc
function for default processing.

21.6 List Box

List box items can be represented by text strings, bitmaps, or both. If the list box is not
large enough to display all the list box items at once, the list box provides a scroll bar.
The user scrolls through the list box items, and applies or removes selection status as
necessary. Selection style of a list box item or its visual appearance can be changed in

Using Dialogs and Windows Controls 16

Operating system metrics. When the user selects or deselects an item, the system sends a
notification message to the parent window of the list box.

A dialog box procedure is responsible for initializing and monitoring its child windows,
including any list boxes. The dialog box procedure communicates with the list box by
sending messages to it and by processing the notification messages sent by the list box.

21.6.1 List Box types and styles

There are two types of list boxes: single-selection (the default) and multiple-selection. In
a single-selection list box, the user can select only one item at a time. In a multiple-
selection list box, the user can select more than one item at a time. To create a multiple-
selection list box, specify the LBS_MULTIPLESEL or the LBS_EXTENDEDSEL style.

There are many list box styles and window styles that control the appearance and
operation of a list box. These styles indicate whether list box items are sorted, arranged in
multiple columns, drawn by the application, and so on. The dimensions and styles of a
list box are typically defined in a dialog box template included in an application's
resources.

To create a list box by using the CreateWindow or CreateWindowEx function, use the
LISTBOX class, appropriate window style constants, and the following style constants to
define the list box. After the control has been created, these styles cannot be modified,
except as noted.

LBS_DISABLENOSCROLL:
Shows a disabled vertical scroll bar for the list box when the box does not contain
enough items to scroll. If you do not specify this style, the scroll bar is hidden
when the list box does not contain enough items.

LBS_EXTENDEDSEL:
This style allows multiple items to be selected by using the SHIFT key and the
mouse or special key combinations.

LBS_HASSTRINGS:
This style specifies that a list box contains items consisting of strings. The list box
maintains the memory and addresses for the strings so that the application can use
the LB_GETTEXT message to retrieve the text for a particular item. By default,
all list boxes except owner-drawn list boxes have this style. You can create an
owner-drawn list box either with or without this style.

LBS_MULTICOLUMN:
This style specifies a multi column list box that is scrolled horizontally. The
LB_SETCOLUMNWIDTH message sets the width of the columns.

LBS_MULTIPLESEL:
Turns string selection on or off each time the user clicks or double-clicks a string
in the list box. The user can select any number of strings.

Using Dialogs and Windows Controls 17

LBS_NODATA:
This style specifies a no-data list box. Specify this style when the count of items
in the list box will exceed one thousand. A no-data list box must also have the
LBS_OWNERDRAWFIXED style, but must not have the LBS_SORT or
LBS_HASSTRINGS style.
A no-data list box resembles an owner-drawn list box except that it contains no
string or bitmap data for an item. Commands to add, insert, or delete an item
always ignore any specified item data; requests to find a string within the list box
always fail. The system sends the WM_DRAWITEM message to the owner
window when an item must be drawn. The itemID member of the
DRAWITEMSTRUCT structure passed with the WM_DRAWITEM message
specifies the line number of the item to be drawn. A no-data list box does not send
a WM_DELETEITEM message.

LBS_NOINTEGRALHEIGHT:
This style specifies that the size of the list box is exactly the size specified by the
application when it created the list box. Normally, the system sizes a list box so
that the list box does not display partial items.

LBS_NOREDRAW:
This style specifies that the list box's appearance is not updated when changes are
made.To change the redraw state of the control, use the WM_SETREDRAW
message.

LBS_NOSEL:
This style specifies that the list box contains items that can be viewed but not
selected.

LBS_NOTIFY:
This style notifies the parent window with an input message whenever the user
clicks or double-clicks a string in the list box.

LBS_OWNERDRAWFIXED:
This style specifies that the owner of the list box is responsible for drawing its
contents and that the items in the list box are the same height. The owner window
receives a WM_MEASUREITEM message when the list box is created and a
WM_DRAWITEM message when a visual aspect of the list box has changed.

LBS_OWNERDRAWVARIABLE:
Specifies that the owner of the list box is responsible for drawing its contents and
that the items in the list box are variable in height. The owner window receives a
WM_MEASUREITEM message for each item in the combo box when the
combo box is created and a WM_DRAWITEM message when a visual aspect of
the combo box has changed.

LBS_SORT
Sorts strings in the list box alphabetically.

LBS_STANDARD
Sorts strings in the list box alphabetically. The parent window receives an input
message whenever the user clicks or double-clicks a string. The list box has
borders on all sides.

Using Dialogs and Windows Controls 18

LBS_USETABSTOPS
Enables a list box to recognize and expand tab characters when drawing its
strings. You can use the LB_SETTABSTOPS message to specify tab stop
positions. The default tab positions are 32 dialog template units apart. Dialog
template units are the device-independent units used in dialog box templates. To
convert measurements from dialog template units to screen units (pixels), use the
MapDialogRect function.

LBS_WANTKEYBOARDINPUT
This style specifies that the owner of the list box receives WM_VKEYTOITEM
messages whenever the user presses a key and the list box has the input focus.
This enables an application to perform special processing on the keyboard input.

Note: the description of the controls including list box has been taken from Microsoft
Help Desk.

21.6.2 Notification Messages from List Boxes

When an event occurs in a list box, the list box sends a notification message to the dialog
box procedure of the owner window. List box notification messages are sent when a user
selects, double-clicks, or cancels a list box item; when the list box receives or loses the
keyboard focus; and when the system cannot allocate enough memory for a list box
request. A notification message is sent as a WM_COMMAND message in which the low-
order word of the wParam parameter contains the list box identifier, the high-order word
of wParam contains the notification message, and the lParam parameter contains the
control window handle.

A dialog box procedure is not required to process these messages; the default window
procedure processes them.

An application should monitor and process the following list box notification messages.

Notification message Description
LBN_DBLCLK The user double-clicks an item in the list box.
LBN_ERRSPACE The list box cannot allocate enough memory to fulfill a request.
LBN_KILLFOCUS The list box loses the keyboard focus.
LBN_SELCANCEL The user cancels the selection of an item in the list box.
LBN_SELCHANGE The selection in a list box is about to change.
LBN_SETFOCUS The list box receives the keyboard focus.

21.6.3 Messages to List Boxes

A dialog box procedure can send messages to a list box to add, delete, examine, and
change list box items. For example, a dialog box procedure could send an
LB_ADDSTRING message to a list box to add an item, and an LB_GETSEL message to
determine whether the item is selected. Other messages set and retrieve information about

Using Dialogs and Windows Controls 19

the size, appearance, and behavior of the list box. For example, the
LB_SETHORIZONTALEXTENT message sets the scrollable width of a list box. A
dialog box procedure can send any message to a list box by using the SendMessage or
SendDlgItemMessage function.

A list box item is often referenced by its index, an integer that represents the item's
position in the list box. The index of the first item in a list box is zero; the index of the
second item is one, and so on.

The following table describes how the predefined list box procedure responds to list box
messages.

Message Response

LB_ADDFILE
Inserts a file into a directory list box filled by the
DlgDirList function and retrieves the list box index
of the inserted item.

LB_ADDSTRING Adds a string to a list box and returns its index.

LB_DELETESTRING Removes a string from a list box and returns the
number of strings remaining in the list.

LB_DIR Adds a list of filenames to a list box and returns the
index of the last filename added.

LB_FINDSTRING Returns the index of the first string in the list box that
begins with a specified string..

LB_FINDSTRINGEXACT Returns the index of the string in the list box that is
equal to a specified string.

LB_GETANCHORINDEX Returns the index of the item that the mouse last
selected.

LB_GETCARETINDEX Returns the index of the item that has the focus
rectangle.

LB_GETCOUNT Returns the number of items in the list box.
LB_GETCURSEL Returns the index of the currently selected item.
LB_GETHORIZONTALEXTENT Returns the scrollable width, in pixels, of a list box.
LB_GETITEMDATA Returns the value associated with the specified item.
LB_GETITEMHEIGHT Returns the height, in pixels, of an item in a list box.

LB_GETITEMRECT Retrieves the client coordinates of the specified list
box item.

LB_GETLOCALE
Retrieves the locale of the list box. The high-order
word contains the country/region code and the low-
order word contains the language identifier.

LB_GETSEL Returns the selection state of a list box item.

LB_GETSELCOUNT Returns the number of selected items in a multiple-
selection list box.

Using Dialogs and Windows Controls 20

LB_GETSELITEMS
Creates an array of the indexes of all selected items in
a multiple-selection list box and returns the total
number of selected items.

LB_GETTEXT Retrieves the string associated with a specified item
and the length of the string.

LB_GETTEXTLEN Returns the length, in characters, of the string
associated with a specified item.

LB_GETTOPINDEX Returns the index of the first visible item in a list box.

LB_INITSTORAGE Allocates memory for the specified number of items
and their associated strings.

LB_INSERTSTRING Inserts a string at a specified index in a list box.

LB_ITEMFROMPOINT Retrieves the zero-based index of the item nearest the
specified point in a list box.

LB_RESETCONTENT Removes all items from a list box.

LB_SELECTSTRING Selects the first string it finds that matches a specified
prefix.

LB_SELITEMRANGE Selects a specified range of items in a list box.

LB_SELITEMRANGEEX

Selects a specified range of items if the index of the
first item in the range is less than the index of the last
item in the range. Cancels the selection in the range if
the index of the first item is greater than the last.

LB_SETANCHORINDEX Sets the item that the mouse last selected to a
specified item.

LB_SETCARETINDEX Sets the focus rectangle to a specified list box item.
LB_SETCOLUMNWIDTH Sets the width, in pixels, of all columns in a list box.
LB_SETCOUNT Sets the number of items in a list box.
LB_SETCURSEL Selects a specified list box item.
LB_SETHORIZONTALEXTENT Sets the scrollable width, in pixels, of a list box.
LB_SETITEMDATA Associates a value with a list box item.

LB_SETITEMHEIGHT Sets the height, in pixels, of an item or items in a list
box.

LB_SETLOCALE Sets the locale of a list box and returns the previous
locale identifier.

LB_SETSEL Selects an item in a multiple-selection list box.

LB_SETTABSTOPS Sets the tab stops to those specified in a specified
array.

LB_SETTOPINDEX Scrolls the list box so the specified item is at the top
of the visible range.

The predefined list box procedure passes all other messages to DefWindowProc for
default processing.

Using Dialogs and Windows Controls 21

21.7 Example Application

The following components will be used in our application

21.7.1 Modeless Dialogs

Dialog box is designed in resource edit provided by Visual Studio

21.7.2 Choose Color Dialogs

Choose color is built resource in windows.

Using Dialogs and Windows Controls 22

21.7.3 About Dialogs

About dialog is designed in resource editor.

21.7.4 Creating Windows used in Application

hWndMain = CreateWindow(windowClassName,
windowName,
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
CW_USEDEFAULT, 1, CW_USEDEFAULT, 1,
NULL, NULL, hInstance, NULL
);

if(!hWndMain)
{

return 0;
}

21.7.5 Creating Dialogs

hCommandDialog = CreateDialog(hInstance,
MAKEINTRESOURCE(IDD_DIALOG_DRAW),
hWndMain, commandDialogProc
);

Using Dialogs and Windows Controls 23

if(!hCommandDialog)
{
 return 0;
}

ShowWindow(hCommandDialog, SW_SHOWNORMAL);

commandDialogShown = TRUE;

CheckMenuItem(GetMenu(hWndMain), ID_VIEW_SHOWCOMMANDDIALOG,
MF_CHECKED | MF_BYCOMMAND);

21.7.6 Message Loop

while(GetMessage(&msg, NULL, 0, 0) > 0)
{
 if(!IsDialogMessage(hCommandDialog, &msg))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
}

21.7.7 Menu Command

Case ID_VIEW_SHOWCOMMANDDIALOG:

if(commandDialogShown) // already visible?
{

ShowWindow(hCommandDialog, SW_HIDE); // hide it

CheckMenuItem(GetMenu(hWnd),
ID_VIEW_SHOWCOMMANDDIALOG, MF_UNCHECKED |
MF_BYCOMMAND); // uncheck
commandDialogShown = FALSE;

}
else
{
}

Using Dialogs and Windows Controls 24

21.7.8 Command Dialog Procedure

Static COLORREF textColour, brushColour;

case WM_INITDIALOG:
 CheckDlgButton(hDlg, IDC_RADIO_RECTANGLE, BST_CHECKED); //
BM_SETCHECK message: check rectangle button

EnableWindow(GetDlgItem(hDlg, IDC_EDIT_TEXT), FALSE); // disable edit control

SendDlgItemMessage(hDlg, IDC_EDIT_TEXT, EM_LIMITTEXT, TEXT_LIMIT, 0);
 // set text limit

SetWindowText(GetDlgItem(hDlg, IDC_EDIT_TEXT), "This is Virtual University");

brushColour = RGB_BRUSH_COLOR; //RGB(255, 255, 160)
textColour = RGB_TEXT_COLOR; //RGB(0, 50, 220)
return TRUE; // system should set focus

wNotificationCode = HIWORD(wParam);
wID = LOWORD(wParam);
if(wNotificationCode == BN_CLICKED)
{
 switch(wID)
 {
 case IDC_RADIO_RECTANGLE:

EnableWindow(GetDlgItem(hDlg, IDC_EDIT_TEXT), FALSE);

// disable edit control similarly in IDC_RADIO_CIRCLE

case IDC_RADIO_TEXT:
EnableWindow(GetDlgItem(hDlg, IDC_EDIT_TEXT), TRUE);
SendDlgItemMessage(hDlg, IDC_EDIT_TEXT, EM_SETSEL, 0, -1);

SetFocus(GetDlgItem(hDlg, IDC_EDIT_TEXT));

//Now handlingo of WM_CTLCOLORSTATIC

case WM_CTLCOLORSTATIC:

 switch(GetDlgCtrlID((HWND)lParam))
 {
 case IDC_STATIC_TEXT_COLOR:
 if(hBrush) // if some brush was created before
 DeleteObject(hBrush);
 hBrush = CreateSolidBrush(textColour); // create a brush
 return (BOOL)hBrush;

Using Dialogs and Windows Controls 25

 break;

 case IDC_STATIC_BRUSH_COLOR:
 if(hBrush) // if some brush was created before
 DeleteObject(hBrush);
 hBrush = CreateSolidBrush(brushColour); // create a brush
 return (BOOL)hBrush;
 break;

 default:
 return FALSE; // perform default message handling

21.7.9 Messages Used in Our Application

BM_SETCHECK:
wParam: check-state either BST_CHECKED or BST_UNCHECKED

EM_LIMITTEXT: wParam: text length
EM_SETSEL:
wParam: starting pos
lParam: ending pos.
0&-1:All selected, start:-1: current selection deselected

21.7.10 The WM_CTRLCOLORSTATIC Message

A static control, or an edit control that is read-only or disabled, sends the
WM_CTLCOLORSTATIC message to its parent window when the control is about to
be drawn. By responding to this message, the parent window can use the specified device
context handle to set the text and background colors of the static control.

A window receives this message through its WindowProc function.

WM_CTLCOLORSTATIC

 WPARAM wParam
 LPARAM lParam;

wParam:

Handle to the device context for the static control window.
lParam:

Handle to the static control.

Using Dialogs and Windows Controls 26

Return Value:

If an application processes this message, the return value is a handle to a brush
that the system uses to paint the background of the static control.

By default, the DefWindowProc function selects the default system colors for the static
control.

Edit controls that are not read-only or disabled do not send the
WM_CTLCOLORSTATIC message; instead, they send the WM_CTLCOLOREDIT
message.

The system does not automatically destroy the returned brush. It is the application's
responsibility to destroy the brush when it is no longer needed.

The WM_CTLCOLORSTATIC message is never sent between threads; it is sent only
within the same thread.

If a dialog box procedure handles this message, it should cast the desired return value to a
BOOL and return the value directly. If the dialog box procedure returns FALSE, then
default message handling is performed. The DWL_MSGRESULT value set by the
SetWindowLong function is ignored.

Summary
 Windows controls are basic controls that are pre-registered in windows. We have
discussed some of them like button, list box and edit box controls. These controls are
helpful to display information in a very organized manner in a dialog box or in a window.
Edit box control is simple to use. It has few message and notifications messages. Sending
message to edit box window we can limit text in edit box, set text and get text etc. Button
is another ubiquitous control in windows. Button is used almost in every user interactive
application. Button is sent messages like edit box and list box, and also send notification
messages to its parent window. List View is another useful control in windows systems.
List view control list the items in its window. These items can be selected and clicked on
each click list box send notification message to its parent window.

Exercises
1. Create a Medical Store data base form. This form should be a Modal/Modeless

dialog box containing all the controls needed for the medical store keeper to enter
data.

2. Create Owner draw list box, which has green selection rectangle and white text
instead of blue (default) selection rectangle.

Chapter 22

22.1 DIALOGS (CONTINUE FROM THE PREVIOUS LECTURE) 1
22.2 COMMAND DIALOG PROCEDURE 2
22.3 CHOOSE COLOR DIALOG 2
22.4 OUR OWN DEFINED FUNCTION SHOWCHOOSECOLORDIALOG 3
22.5 COMMAND DIALOG PROCEDURE (DRAWING) 4
22.6 THE ABOUT BOX (MAIN WINDOW PROCEDURE) 4
22.7 ABOUT BOX DIALOG PROCEDURE 5
SUMMARY 5
EXERCISES 6

22.1 Dialogs (Continue from the Previous Lecture)

Using Common Dialogs and Windows Controls 2

In this lecture, we will discuss more about the dialog boxes and their commands
implementations.

22.2 Command Dialog Procedure

case WM_CTLCOLORSTATIC:
 switch(GetDlgCtrlID((HWND)lParam))
 {
 case IDC_STATIC_TEXT_COLOR:
 if(hBrush) // if some brush was created before
 DeleteObject(hBrush);
 hBrush = CreateSolidBrush(textColour); // create a brush
 return (BOOL)hBrush;
 break;

 case IDC_STATIC_BRUSH_COLOR:
 if(hBrush) // if some brush was created before
 DeleteObject(hBrush);
 hBrush = CreateSolidBrush(brushColour); // create a brush
 return (BOOL)hBrush;
 break;

 default:
 return FALSE; // perform default message handling

22.3 Choose Color Dialog

ChooseColor(&chooseclr);

typedef struct {
 DWORD lStructSize;
 HWND hwndOwner;
 HWND hInstance;
 COLORREF rgbResult;
 COLORREF * lpCustColors;
 DWORD Flags; CC_RGBINIT | CC_FULLOPEN | CC_ANYCOLOR
 LPARAM lCustData;
 LPCCHOOKPROC lpfnHook;
 LPCTSTR lpTemplateName;
} CHOOSECOLOR, *LPCHOOSECOLOR; return Val???

case WM_CTLCOLORSTATIC:
 switch(GetDlgCtrlID((HWND)lParam))
 {

Using Common Dialogs and Windows Controls 3

case IDC_BUTTON_BRUSH_COLOR:

if(ShowChooseColorDialog(hDlg, brushColour, &brushColour))
{

GetClientRect(GetDlgItem(hDlg, IDC_STATIC_BRUSH_COLOR),
&rect);

InvalidateRect(GetDlgItem(hDlg, IDC_STATIC_BRUSH_COLOR),
&rect, TRUE);

}
Break;

22.4 Our own defined function ShowChooseColorDialog

BOOL ShowChooseColorDialog(HWND Owner, COLORREF initClr, LPCOLORREF
chosenClr)
{
CHOOSECOLOR cc;
 static COLORREF customColors[16];

 memset(&cc, 0, sizeof(cc));

 cc.lStructSize = sizeof(CHOOSECOLOR);
 cc.hwndOwner = hwndOwner;
 cc.rgbResult = initialColor;
 cc.lpCustColors = customColors;
 cc.Flags = CC_RGBINIT | CC_FULLOPEN | CC_ANYCOLOR;

 if(ChooseColor(&cc)) // OK pressed
 {
 *chosenColor = cc.rgbResult;
 return TRUE;
 }
 return FALSE;
}

Continue from Command Dialog Procedure:

case IDC_BUTTON_BRUSH_COLOR:
if(ShowChooseColorDialog(hDlg, brushColour, &brushColour))
{
// REPAINT CONTROL: send WM_CTLCOLORSTATIC druing repainting

 GetClientRect(GetDlgItem(hDlg, IDC_STATIC_BRUSH_COLOR), &rect);

Using Common Dialogs and Windows Controls 4

 InvalidateRect(GetDlgItem(hDlg, IDC_STATIC_BRUSH_COLOR), &rect,
TRUE);
} Break;

22.5 Command Dialog Procedure (Drawing)

case IDC_BUTTON_DRAW:
 hDC = GetDC(GetParent(hDlg));
 if(IsDlgButtonChecked(hDlg, IDC_RADIO_RECTANGLE) ==
BST_CHECKED)
 {
 hOwnerBrush = CreateHatchBrush(HS_BDIAGONAL, brushColour);

 hOldBrush = SelectObject(hDC, hOwnerBrush);
 Rectangle(hDC, 10, 10, 200, 200);

 SelectObject(hDC, hOldBrush); // restore old selection
 DeleteObject(hOwnerBrush);
}

22.6 The About Box (Main Window Procedure)

Now create a Modal Dialog box on the about event.

case ID_HELP_ABOUT:
 DialogBox(hAppInstance, MAKEINTRESOURCE(IDD_DIALOG_ABOUT),
hWnd, aboutDialogProc);

Using Common Dialogs and Windows Controls 5

22.7 About Box Dialog Procedure

LPTSTR strings[5][2] = {{"Application", "Lecture 22"},
{"Author", "M. Shahid Sarfraz"},
{"Institution", "Virtual University"},
{"Year", "2003"},
{"Copyright", "2003 Virtual University"}};

case WM_INITDIALOG:
for(i=0; i<5; ++i)
{

index = SendDlgItemMessage(hDlg,IDC_LIST_ABOUT, LB_ADDSTRING, 0,
(LPARAM)strings[i][0]);
SendDlgItemMessage(hDlg, IDC_LIST_ABOUT, LB_SE

 TITEMDATA,index,(LPARAM)strings[i][1])
}

// set current selection to 0
SendDlgItemMessage(hDlg, IDC_LIST_ABOUT, LB_SETCURSEL, 0, 0);

//Check notification messaqges in about dialog box
LPTSTR str;
case WM_COMMAND:
wNotificationCode = HIWORD(wParam);
wID = LOWORD(wParam);

switch(wID)
{
case IDC_LIST_ABOUT:
 if(wNotificationCode == LBN_SELCHANGE)
 {

index = SendDlgItemMessage(hDlg, wID, LB_GETCURSEL, 0, 0);
SetDlgItemText(hDlg, IDC_STATIC_ABOUT, strings[0][1]);
str = (LPTSTR)SendDlgItemMessage(hDlg, IDC_LIST_ABOUT,
LB_GETITEMDATA, index, 0);
SetDlgItemText(hDlg, IDC_STATIC_ABOUT, str);
}

}

Summary
 We have been studying dialogs from previous two lectures. In this lecture, we
have implemented some of the command implementation of dialog boxes. Common
dialogs are very much useful in windows. Using common dialogs, you can show user to
choose colors, files and printer, etc. Dialog resources are easy to use and easier to handle.
Controls can be displayed on the dialogs. Dialogs by default set the font and dimensions
of the controls. Dialogs are used in many areas like configuration of hardware devices,

Using Common Dialogs and Windows Controls 6

internet connections, properties and database configurations. Another important dialogs
are called property sheets. This property sheet enables you to select any category from
the tabs.

Exercises
1. Create a Medical Store data base form. This form should be a Modal/Modeless

dialog box containing all the controls needed for the medical store keeper to enter
data. This form should handle all the controls notification messages. Save the
data, entered in a dialog box controls, in a file.

2. Create Owner draw combo box, which has green selection rectangle and white
text instead of blue (default) selection rectangle.

Chapter 23

23.1 OVERVIEW OF WINDOWS COMMON CONTROLS 2
23.2 COMMON CONTROL LIBRARY 3
DLL VERSIONS 4
23.3 COMMON CONTROL STYLES 4
23.4 INITIALIZE COMMON CONTROLS 5
23.4.1 INITCOMMONCONTROLS FUNCTION 5
23.4.2 INITCOMMONCONTROLSEX FUNCTION 5
23.4.2.1 INITCOMMONCONTROLSEX STRUCTURE 6
23.5 LIST VIEW 7
23.6 TODAY’S GOAL 7
23.7 IMAGE LIST 7
23.8 IMAGELIST_CREATE FUNCTION 7
23.9 IMAGELIST_ADDICON FUNCTION 9
23.10 IMAGELIST_REPLACEICON FUNCTION 9
23.11 SCREEN SHOT OF AN EXAMPLE APPLICATION 10
23.12 CREATING LIST VIEW CONTROL 10
CREATING IMAGE LIST 10
23.13 WINDOWS DEFAULT FOLDER ICON 11
23.14 ADD IMAGE LIST 11
23.15 ADD COLUMN TO LIST VIEW 11
23.16 ADD AN ITEM 12
23.17 ADD SUB ITEM FOR THIS ITEM 12
23.18 FIND FIRST FILE 12
23.19 ADD COLUMN TO LIST VIEW 13
23.20 LAST MODIFIED DATE OF FILE 13
23.21 MODIFIED LIST VIEW CONTROL 13
SUMMARY 14
EXERCISES 14

Common Controls 2

23.1 Overview of Windows Common Controls

A control is a child window an application uses in conjunction with another window to
perform simple input and output (I/O) tasks. Controls are most often used within dialog
boxes, but they can also be used in other windows. Controls within dialog boxes provide the
user with the means to type text, choose options, and direct a dialog box to complete its
action. Controls in other windows provide a variety of services, such as letting the user
choose commands, view status, and view and edit text. The user control overviews discuss
how to use these controls.

The following table lists the Windows controls.

Control Description

Animation An animation control is a window that displays an Audio-Video Interleaved
(AVI) clip.

Button Button controls typically notify the parent window when the user chooses
the control.

Combo Box Combo box controls are a combination of list boxes and edit controls,
letting the user choose and edit items.

ComboBoxEx ComboBoxEx Controls are an extension of the combo box control that
provides native support for item images.

Date and Time
Picker

A date and time picker (DTP) control provides a simple and intuitive
interface through which to exchange date and time information with a user.

Drag List Box Drag List Boxes are a special type of list box that enables the user to drag
items from one position to another.

Edit Edit controls let the user view and edit text.

Flat Scroll Bar Flat scroll bars behave just like standard scroll bars except that you can
customize their appearance to a greater extent than standard scroll bars.

Header
A header control is a window that is usually positioned above columns of
text or numbers. It contains a title for each column, and it can be divided
into parts.

Hot Key A hot key control is a window that enables the user to enter a combination
of keystrokes to be used as a hot key.

Image Lists An image list is a collection of images of the same size, each of which can
be referred to by its index.

IP Address
Controls

An Internet Protocol (IP) address control allows the user to enter an IP
address in an easily understood format.

List Box List box controls display a list from which the user can select one or more
items.

List-View A list-view control is a window that displays a collection of items. The
control provides several ways to arrange and display the items.

Month Calendar A month calendar control implements a calendar-like user interface.

Common Controls 3

Pager A pager control is a window container that is used with a window that does
not have enough display area to show all of its content.

Progress Bar A progress bar is a window that an application can use to indicate the
progress of a lengthy operation.

Property Sheets A property sheet is a window that allows the user to view and edit the
properties of an item.

ReBar Rebar controls act as containers for child windows. An application assigns
child windows, which are often other controls, to a rebar control band.

Rich Edit Rich Edit controls let the user view and edit text with character and
paragraph formatting, and can include embedded COM objects.

Scroll Bars Scroll bars let the user choose the direction and distance to scroll
information in a related window.

Static Static controls often act as labels for other controls.

Status Bars A status bar is a horizontal window at the bottom of a parent window in
which an application can display various kinds of status information.

SysLink A SysLink control provides a convenient way to embed hypertext links in a
window.

Tab
A tab control is analogous to the dividers in a notebook or the labels in a
file cabinet. By using a tab control, an application can define multiple pages
for the same area of a window or dialog box.

Toolbar
A toolbar is a control window that contains one or more buttons. Each
button, when clicked by a user, sends a command message to the parent
window.

ToolTip ToolTips are hidden most of the time. They appear automatically, or pop
up, when the user pauses the mouse pointer over a tool.

Trackbar
A trackbar is a window that contains a slider and optional tick marks. When
the user moves the slider, using either the mouse or the direction keys, the
trackbar sends notification messages to indicate the change.

Tree-View
A tree-view control is a window that displays a hierarchical list of items,
such as the headings in a document, the entries in an index, or the files and
directories on a disk.

Up-Down
An up-down control is a pair of arrow buttons that the user can click to
increment or decrement a value, such as a scroll position or a number
displayed in a companion control.

23.2 Common control Library

Most common controls belong to a window class defined in the common control DLL. The
window class and the corresponding window procedure define the properties, appearance,
and behavior of the control. To ensure that the common control DLL is loaded, include the
InitCommonControlsEx function in your application. You create a common control by
specifying the name of the window class when calling the CreateWindowEx function or by
specifying the appropriate class name in a dialog box template.

Common Controls 4

DLL Versions

All 32-bit versions of Windows include common controls DLL, Comctl32.dll. However, this
DLL has been updated several times since it was first introduced. Each successive version
supports the features and application programming interface (API) of earlier versions.
However, each new version also contains a number of new features and a correspondingly
larger API. Applications must be aware of which version of Comctl32.dll is installed on a
system, and only use the features and API that the DLL supports.

Because new versions of the common controls were distributed with Microsoft Internet
Explorer, the version of Commctl32.dll that is present is commonly different from the
version that was shipped with the operating system. It may actually be several versions more
recent. It is thus not enough for your application to know which operating system it is
running on. It must directly determine which version of Comctl32.dll is present.

23.3 Common control Styles

CCS_ADJUSTABLE:

This style enables a toolbar's built-in customization features, which enable the user to
drag a button to a new position or to remove a button by dragging it off the toolbar. In
addition, the user can double-click the toolbar to display the Customize Toolbar
dialog box, which enables the user to add, delete, and rearrange toolbar buttons.

CCS_BOTTOM:
Causes the control to position itself at the bottom of the parent window's client area
and sets the width to be the same as the parent window's width. Status windows have
this style by default.

CCS_LEFT:
This style causes the control to be displayed vertically on the left side of the parent
window.

CCS_NODIVIDER:
This style prevents a two-pixel highlight from being drawn at the top of the control.

CCS_NOMOVEX:
This style causes the control to resize and move itself vertically, but not horizontally,
in response to a WM_SIZE message. If CCS_NORESIZE is used, this style does not
apply.

CCS_NOMOVEY:
This style causes the control to resize and move itself horizontally, but not vertically,
in response to a WM_SIZE message. If CCS_NORESIZE is used, this style does not
apply. Header windows have this style by default.

CCS_NOPARENTALIGN:
This style prevents the control from automatically moving to the top or bottom of the
parent window. Instead, the control keeps its position within the parent window
despite changes to the size of the parent. If CCS_TOP or CCS_BOTTOM is also
used, the height is adjusted to the default, but the position and width remain
unchanged.

Common Controls 5

CCS_NORESIZE:
This style prevents the control from using the default width and height when setting
its initial size or a new size. Instead, the control uses the width and height specified in
the request for creation or sizing.

CCS_RIGHT:
This style causes the control to be displayed vertically on the right side of the parent
window.

CCS_TOP:
This style causes the control to position itself at the top of the parent window's client
area and sets the width to be the same as the parent window's width. Toolbars have
this style by default.

CCS_VERT:
This style causes the control to be displayed vertically.

23.4 Initialize Common Controls

For initialization common controls there are two functions available:

• InitCommonControls()
• InitCommonControlsEx()

23.4.1 InitCommonControls Function

Registers and initializes the common control window classes.

According to the Microsoft documentation this little function is obsolete. New applications
should use the InitCommonControlsEx function. So you should not use this function.

void InitCommonControls(VOID);

This little function does not return anything.

23.4.2 InitCommonControlsEx Function

Registers specific common control classes from the common control dynamic-link library
(DLL).

BOOL InitCommonControlsEx(
 LPINITCOMMONCONTROLSEX lpInitCtrls
);

lpInitCtrls: Pointer to an INITCOMMONCONTROLSEX structure that contains information
specifying which control classes will be registered.

Return Value
Returns TRUE if successful, or FALSE otherwise.

Common Controls 6

The effect of each call to InitCommonControlsEx is cumulative. For example, if
InitCommonControlsEx is called with the ICC_UPDOWN_CLASS flag, then is later called
with the ICC_HOTKEY_CLASS flag, the result is that both the up-down and hot key
common control classes are registered and available to the application.

23.4.2.1 INITCOMMONCONTROLSEX Structure

This structure carries information used to load common control classes from the dynamic-
link library (DLL). This structure is used with the InitCommonControlsEx function.

typedef struct tagINITCOMMONCONTROLSEX {
 DWORD dwSize;
 DWORD dwICC;
} INITCOMMONCONTROLSEX, *LPINITCOMMONCONTROLSEX;

dwSize:

Size of the structure, in bytes.
dwICC:

Set of bit flags that indicate which common control classes will be loaded from the
DLL. This value can be a combination of the following:
ICC_ANIMATE_CLASS: Load animate control class.
ICC_BAR_CLASSES: Load toolbar, status bar, trackbar, and ToolTip control
classes.
ICC_COOL_CLASSES: Load rebar control class.
ICC_DATE_CLASSES: Load date and time picker control class.
ICC_HOTKEY_CLASS: Load hot key control class.
ICC_INTERNET_CLASSES: Load IP address class.
ICC_LINK_CLASS: Load a hyperlink control class.
ICC_LISTVIEW_CLASSES: Load list-view and header control classes.
ICC_NATIVEFNTCTL_CLASS: Load a native font control class.
ICC_PAGESCROLLER_CLASS: Load pager control class.
ICC_PROGRESS_CLASS: Load progress bar control class.
ICC_STANDARD_CLASSES: Load one of the intrinsic User32 control classes. The
user controls include button, edit, static, listbox, combobox, and scrollbar.
ICC_TAB_CLASSES: Load tab and ToolTip control classes.
ICC_TREEVIEW_CLASSES: Load tree-view and ToolTip control classes.
ICC_UPDOWN_CLASS: Load up-down control class.
ICC_USEREX_CLASSES: Load ComboBoxEx class.
ICC_WIN95_CLASSES: Load animate control, header, hot key, list-view, progress
bar, status bar, tab, ToolTip, toolbar, trackbar, tree-view, and up-down control
classes.

Common Controls 7

23.5 List View

23.6 Today’s Goal
Today we are going to create a List Box. This list box will be explorer style list box. In this
list box you can see large, small, list, report styles.

23.7 Image List

An image list is a collection of images of the same size, each of which can be referred to by
its index.

23.8 ImageList_Create Function

HIMAGELIST ImageList_Create(
 int cx,
 int cy,
 UINT flags,
 int cInitial,
 int cGrow
);

cx:
 Width, in pixels, of each image.

Common Controls 8

Cy:
Height, in pixels, of each image.

Flags:
Set of bit flags that specify the type of image list to create. This parameter can be a
combination of the following values, but it can include only one of the ILC_COLOR
values.
ILC_COLOR:
Use the default behavior if none of the other ILC_COLOR* flags is specified.
Typically, the default is ILC_COLOR4, but for older display drivers, the default is
ILC_COLORDDB:
ILC_COLOR4:
Use a 4-bit (16-color) device-independent bitmap (DIB) section as the bitmap for the
image list.
ILC_COLOR8:
Use an 8-bit DIB section. The colors used for the color table are the same colors as
the halftone palette.
ILC_COLOR16:
Use a 16-bit (32/64k-color) DIB section.
ILC_COLOR24:
Use a 24-bit DIB section.
ILC_COLOR32:
Use a 32-bit DIB section.
ILC_COLORDDB:
Use a device-dependent bitmap.
ILC_MASK:
Use a mask. The image list contains two bitmaps, one of which is a monochrome
bitmap used as a mask. If this value is not included, the image list contains only one
bitmap.
ILC_MIRROR:
Microsoft® Windows® can be mirrored to display languages such as Hebrew or
Arabic that read right-to-left. If the image list is created on a mirrored version of
Windows, then the images in the lists are mirrored, that is, they are flipped so they
display from right to left. Use this flag on a mirrored version of Windows to instruct
the image list not to automatically mirror images.
ILC_PERITEMMIRROR

cInitial:
This member is number of images that the image list initially contains.

cGrow:
This member is a number of images by which the image list can grow when the
system needs to make room for new images. This parameter represents the number of
new images that the resized image list can contain.

Common Controls 9

23.9 ImageList_AddIcon Function

int ImageList_AddIcon(

 HIMAGELIST himl,
 HICON hicon
);

himl:

Handle to the image list. If this parameter identifies a masked image list, the macro
copies both the image and mask bitmaps of the icon or cursor. If this parameter
identifies a nonmasked image list, the macro copies only the image bitmap.

Hicon:
Handle to the icon or cursor that contains the bitmap and mask for the new image.

Return Value:
Returns the index of the new image if successful, or -1 otherwise.

Because the system does not save hicon, you can destroy it after the macro returns if the icon
or cursor was created by the CreateIcon function. You do not need to destroy hicon if it was
loaded by the LoadIcon function; the system automatically frees an icon resource when it is
no longer needed.

23.10 ImageList_ReplaceIcon Function

int ImageList_ReplaceIcon(
 HIMAGELIST himl,
 int i,
 HICON hicon
);

himl:

Handle to the image list.
i:

Index of the image to replace. If i is -1, the function appends the image to the end of
the list.

Hicon:
Handle to the icon or cursor that contains the bitmap and mask for the new image.

Return Value:
Returns the index of the image if successful, or -1 otherwise.

Common Controls 10

23.11 Screen Shot of an Example Application

23.12 Creating List View Control

#define ID_LISTVIEW 5

hWndListView = CreateWindow(WC_LISTVIEW,
 "Window Name",
 WS_TABSTOP | WS_CHILD | WS_BORDER | WS_VISIBLE | LVS_AUTOARRANGE |
 LVS_REPORT,
 10, 10, 350, 280, hWndMain, (HMENU)ID_LISTVIEW,

hInstance, NULL
);

if(!hWndListView)
{
 return 0;
}

Creating Image List

hLarge = ImageList_Create(GetSystemMetrics(SM_CXICON),
GetSystemMetrics(SM_CYICON), ILC_MASK, 1, 1);
hSmall = ImageList_Create(GetSystemMetrics(SM_CXSMICON),
GetSystemMetrics(SM_CYSMICON), ILC_MASK, 1, 1);

Common Controls 11

hIcon = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_ICON_FOLDER));
ImageList_AddIcon(hLarge, hIcon);
ImageList_AddIcon(hSmall, hIcon);
hIcon = LoadIcon(.. MAKEINTRESOURCE(IDI_ICON_FILE));

23.13 Windows Default Folder Icon

23.14 Add Image List

ListView_SetImageList(hWndListView, hLarge, LVSIL_NORMAL);
 ListView_SetImageList(hWndListView, hSmall, LVSIL_SMALL);

HIMAGELIST ListView_SetImageList(
 HWND hwnd,
 HIMAGELIST himl,
 int iImageList type of IL: LVSIL_NORMAL | LVSIL_SMALL | LVSIL_STATE
);

23.15 Add column to List View

lvc.mask = LVCF_FMT | LVCF_WIDTH | LVCF_TEXT | LVCF_SUBITEM;
 lvc.cx = COL_WIDTH;

 for(i=0; i<3; ++i)
 {
 lvc.iSubItem = i;
 lvc.fmt = alignments[i];
 lvc.pszText = columnHeadings[i];
 if(ListView_InsertColumn(hWndListView, i, &lvc) == -1)
 return 1;
 }

Folder.ico

Common Controls 12

23.16 Add an Item

/* add an item with 3 subitems = 4 columns */

lvi.state = 0; // no state: cut, focussed, selected etc.
lvi.stateMask = 0; // no state specified: cut, focussed, selected etc.
lvi.lParam = (LPARAM)1234; // item specific data

do
{
 lvi.mask = LVIF_TEXT | LVIF_IMAGE | LVIF_PARAM | LVIF_STATE;
 lvi.iItem = itemNo++; // which item it refers to
 lvi.iSubItem = 0; // refers to an ITEM
 lvi.iImage = (findFileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) ?
0 : 1; // proper image
 lvi.pszText = findFileData.cFileName;

 // add the item
 if(ListView_InsertItem(hWndListView, &lvi) == -1)
 return 0;

23.17 Add Sub Item for this Item

lvi.mask = LVIF_TEXT;
lvi.iSubItem = 1;
(findFileData.nFileSizeHigh * (MAXDWORD+1)) + findFileData.nFileSizeLow;
if(findFileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)

wsprintf(buf, "");
else
 wsprintf(buf, "%10lu", findFileData.nFileSizeLow);

 lvi.pszText = buf;
 if(ListView_SetItem(hWndListView, &lvi) == -1)
 return 1;

23.18 Find First File

hFind= FindFirstFile(DEFAULT_PATH, &findFileData);
 if(hFind == INVALID_HANDLE_VALUE)
 {
 MessageBox(NULL, "Error calling FindFirstFile", "Error", MB_OK);
 return 0;
 }

Common Controls 13

23.19 Add Column to List View

lvc.mask = LVCF_FMT | LVCF_WIDTH | LVCF_TEXT | LVCF_SUBITEM;
 lvc.cx = COL_WIDTH;

 for(i=0; i<3; ++i)
 {
 lvc.iSubItem = i;
 lvc.fmt = alignments[i];
 lvc.pszText = columnHeadings[i];
 if(ListView_InsertColumn(hWndListView, i, &lvc) == -1)
 return 0;
 }

23.20 Last Modified Date of File

FileTimeToLocalFileTime(&findFileData.ftLastWriteTime, &fileTime);
 FileTimeToSystemTime(&fileTime, &systemTime);

 strcpy(strAMPM, systemTime.wHour>=12 ? "PM" : "AM");
 if(systemTime.wHour>=12)
 systemTime.wHour -= 12;
 if(!systemTime.wHour)
 systemTime.wHour = 12;

 wsprintf(buf, "%d/%d/%d %2d:%02d %s", systemTime.wMonth, systemTime.wDay,
systemTime.wYear, systemTime.wHour, systemTime.wMinute, strAMPM);
 lvi.iSubItem = 2;
 lvi.pszText = buf;
 if(ListView_SetItem(hWndListView, &lvi) == -1)
 return 1;

23.21 Modified List View control

VOID SetView(HWND hwndListView, DWORD dwStyle)
{
 DWORD dwCurrentStyle;

 dwCurrentStyle = GetWindowLong(hwndListView, GWL_STYLE);
 SetWindowLong(hwndListView, GWL_STYLE, (dwCurrentStyle &
~LVS_TYPEMASK) | dwStyle);
}

Common Controls 14

Summary
 Common Controls are the part of Microsoft Windows Graphics Operating System.
Almost all the WYSIWYG application use Common Controls for their compatibility and user
friendliness with windows. In this lecture, we studied about common controls, their styles
and behavior. We also created an application which best demonstrates the List View control
of common controls. Common controls include controls like page controls, tree controls, list
view controls that is modified from windows original control, button control that is also
modified from windows original controls, data and time picker control, status bar, progress
bar, rebar controls. These all controls reside in common controls library and the library has
shipped with many versions. Before using the library you must check the valid version of the
library because different version of library contains different controls properties.

Exercises
1. Create Tree control and show all the files hierarchy.

Chapter 24

24.1 WHAT IS A PROCESS 2
24.2 MEMORY MANAGEMENT BASICS 2
24.2.1 VIRTUAL ADDRESS SPACE 2
24.2.2 VIRTUAL ADDRESS SPACE AND PHYSICAL STORAGE 2
24.2.3 PAGE STATE 3
24.3 MEMORY PROTECTION 3
Copy-on-Write Protection 5
Loading Applications and DLLs 6
24.4 WHAT IS A THREAD 6
24.4.1 MULTITASKING 7
24.5 LINKING THE COMPILED CODE 7
24.6 DYNAMIC LINK LIBRARIES 7
Types of Dynamic Linking 8
DLLs and Memory Management 8
24.7 DLL ENTRY POINT 9
24.8 DLL EXPORTS AND DLL IMPORTS 11
24.9 DLL FUNCTION AND CALLING FUNCTION FROM IN IT 12
SUMMARY 12
EXERCISES 12

Dynamic Link Libraries 2

24.1 What Is a Process

A running application that consists of a private virtual address space, code, data, and
other operating-system resources, such as files, pipes, and synchronization objects that
are visible to the process. A process also contains one or more threads that run in the
context of the process.

An application consists of one or more processes. A process, in the simplest terms, is an
executing program. One or more threads run in the context of the process. A thread is the
basic unit to which the operating system allocates processor time. A thread can execute
any part of the process code, including parts currently being executed by another thread.
A fiber is a unit of execution that must be manually scheduled by the application. Fibers
run in the context of the threads that schedule them.

24.2 Memory Management Basics

Each process on 32-bit Microsoft® Windows® has its own virtual address space that
enables addressing up to 4 gigabytes of memory. All threads of a process can access its
virtual address space. However, threads cannot access memory that belongs to another
process which protects a process from being corrupted by another process.

24.2.1 Virtual Address Space

The virtual addresses used by a process do not represent the actual physical location of an
object in memory. Instead, the system maintains a page map for each process, which is
an internal data structure used to translate virtual addresses into corresponding physical
addresses. Each time a thread references an address, the system translates the virtual
address to a physical address.

The virtual address space is divided into partitions as follows: The 2 GB partition in low
memory (0x00000000 through 0x7FFFFFFF) is available to the process, and the 2 GB
partition in high memory (0x80000000 through 0xFFFFFFFF) is reserved for the system.

24.2.2 Virtual Address Space and Physical storage

The virtual address space of each process is much larger than the total physical memory
available to all processes. To increase the size of physical storage, the system uses the
disk for additional storage. The total amount of storage available to all executing
processes is the sum of the physical memory and the free space on disk available to the
paging file, a disk file used to increase the amount of physical storage. Physical storage
and the virtual address space of each process are organized into pages, units of memory,
whose size depends on the host computer. For example, on x86 computers the host page
size is 4 kilobytes.

Dynamic Link Libraries 3

To maximize its flexibility in managing memory, the system can move pages of physical
memory to and from a paging file on disk. When a page is moved in physical memory,
the system updates the page maps of the affected processes. When the system needs
space in physical memory, it moves the least recently used pages of physical memory to
the paging file. Manipulation of physical memory by the system is completely transparent
to applications which operate only in their virtual address spaces.

24.2.3 Page State

The pages of a process's virtual address space can be in one of the following states.

State Description

Free

The page is neither committed nor reserved. The page is not accessible to the
process. It is available to be committed, reserved, or simultaneously reserved
and committed. Attempting to read from or write to a free page results in an
access violation exception.

A process can use the VirtualFree or VirtualFreeEx function to release
reserved or committed pages of its address space, returning them to the free
state.

Reserved

The page has been reserved for future use. The range of addresses cannot be
used by other allocation functions. The page is not accessible and has no
physical storage associated with it. It is available to be committed.

A process can use the VirtualAlloc or VirtualAllocEx function to reserve
pages of its address space and later to commit the reserved pages. It can use
VirtualFree or VirtualFreeEx to decommit committed pages and return
them to the reserved state.

Committed

Physical storage is allocated for the page, and access is controlled by a
memory protection option. The system initializes and loads each committed
page into physical memory only during the first attempt to read or write to
that page. When the process terminates, the system releases the storage for
committed pages.

A process can use VirtualAlloc or VirtualAllocEx to allocate committed
pages. These functions can commit pages that are already committed. The
GlobalAlloc and LocalAlloc functions allocate committed pages with
read/write access.

24.3 Memory Protection

Memory that belongs to a process is implicitly protected by its private virtual address
space. In addition, Windows provides memory protection using the virtual memory
hardware. The implementation of this protection varies with the processor. For example,

Dynamic Link Libraries 4

code pages in the address space of a process can be marked read-only and protected from
modification by user-mode threads.

The following table lists the memory-protection options provided by Windows. You must
specify one of the following values when allocating or protecting a page in memory.

Value Meaning

PAGE_EXECUTE
Enables execute access to the committed region of
pages. An attempt to read or write to the committed
region results in an access violation.

PAGE_EXECUTE_READ
Enables execute and read access to the committed
region of pages. An attempt to write to the committed
region results in an access violation.

PAGE_EXECUTE_READWRITE Enables execute, read, and write access to the
committed region of pages.

PAGE_EXECUTE_WRITECOPY
Enables execute, read, and write access to the
committed region of pages. The pages are shared
read-on-write and copy-on-write.

PAGE_NOACCESS

Disables all access to the committed region of pages.
An attempt to read from, write to, or execute the
committed region results in an access violation
exception, called a general protection (GP) fault.

PAGE_READONLY

Enables read access to the committed region of pages.
An attempt to write to the committed region results in
an access violation. If the system differentiates
between read-only access and execute access, an
attempt to execute code in the committed region
results in an access violation.

PAGE_READWRITE Enables both read and write access to the committed
region of pages.

PAGE_WRITECOPY

Gives copy-on-write protection to the committed
region of pages.

Windows Me/98/95: This flag is not supported.

The following are modifiers that can be used in addition to the options provided in the
previous table, except as noted.

Value Meaning

PAGE_GUARD

Pages in the region become guard pages. Any attempt to access a
guard page causes the system to raise a STATUS_GUARD_PAGE
exception and turn off the guard page status. Guard pages thus act as
a one-time access alarm.

Dynamic Link Libraries 5

When an access attempt leads the system to turn off guard page
status, the underlying page protection takes over.

If a guard page exception occurs during a system service, the service
typically returns a failure status indicator.

This value cannot be used with PAGE_NOACCESS.

PAGE_NOCACHE

Does not allow caching of the committed regions of pages in the
CPU cache. The hardware attributes for the physical memory should
be specified as "no cache." This is not recommended for general
usage. It is useful for device drivers; for example, mapping a video
frame buffer with no caching.

This value cannot be used with PAGE_NOACCESS.

Copy-on-Write Protection

Copy-on-write protection is an optimization that allows multiple processes to map their
virtual address spaces such that they share a physical page until one of the processes
modifies the page. This is part of a technique called lazy evaluation, which allows the
system to conserve physical memory and time by not performing an operation until
absolutely necessary.

For example, suppose two processes load pages from the same DLL into their virtual
memory spaces. These virtual memory pages are mapped to the same physical memory
pages for both processes. As long as neither of the processes writes to these pages, they
can map to and share the same physical pages as shown in the following diagram.

If Process 1 writes to one of these pages, the contents of the physical page are copied to
another physical page and the virtual memory map is updated for Process 1. Both
processes now have their own instance of the page in physical memory. Therefore, it is

Dynamic Link Libraries 6

not possible for one process to write to a shared physical page and for the other process to
see the changes.

Figure 1

Loading Applications and DLLs

When multiple instances of the same Windows-based application are loaded, each
instance is run in its own protected virtual address space. However, their instance handles
(hInstance) typically have the same value. This value represents the base address of the
application in its virtual address space. If each instance can be loaded into its default base
address, it can map to and share the same physical pages with the other instances, using
copy-on-write protection. The system allows these instances to share the same physical
pages until one of them modifies a page. If for some reason one of these instances cannot
be loaded in the desired base address, it receives its own physical pages.

DLLs are created with a default base address. Every process that uses a DLL will try to
load the DLL within its own address space at the default virtual address for the DLL. If
multiple applications can load a DLL at its default virtual address, they can share the
same physical pages for the DLL. If for some reason a process cannot load the DLL at the
default address, it loads the DLL elsewhere. Copy-on-write protection forces some of the
DLL's pages to be copied into different physical pages for this process, because the
fixups for jump instructions are written within the DLL's pages, and they will be different
for this process. If the code section contains many references to the data section, this can
cause the entire code section to be copied to new physical pages.

24.4 What is a Thread
A thread is the basic unit to which the operating system allocates processor time. A
thread can execute any part of the process code, including parts currently being executed
by another thread.

Dynamic Link Libraries 7

24.4.1 Multitasking

A multitasking operating system divides the available processor time among the
processes or threads that need it. The system is designed for preemptive multitasking; it
allocates a processor time slice to each thread it executes. The currently executing thread
is suspended when its time slice elapses, allowing another thread to run. When the system
switches from one thread to another, it saves the context of the preempted thread and
restores the saved context of the next thread in the queue.

The length of the time slice depends on the operating system and the processor. Because
each time slice is small (approximately 20 milliseconds), multiple threads appear to be
executing at the same time. This is actually the case on multiprocessor systems, where the
executable threads are distributed among the available processors. However, you must
use caution when using multiple threads in an application, because system performance
can decrease if there are too many threads.

24.5 Linking the Compiled Code

What is compiled .OBJ code?

Compiled Object file contains the reference of the unresolved symbols.
Linker links the library and paste the actual code from the libraries to the executable code
that is called static Linking;
Linking at run time is called Dynamic Linking.
Dynamic Link Libraries (DLLs) are linked dynamically.

Libraries are statically linked to the code and unresolved symbols. When a programs
loads in memory and run then it would need dynamic link libraries that have the symbols
and resolved addresses.

24.6 Dynamic Link Libraries

A dynamic-link library (DLL) is a module that contains functions and data that can be
used by another module (application or DLL).

A DLL can define two kinds of functions: exported and internal. The exported functions
are intended to be called by other modules, as well as from within the DLL where they
are defined. Internal functions are typically intended to be called only from within the
DLL where they are defined. Although a DLL can export data, its data is generally used
only by its functions. However, there is nothing to prevent another module from reading
or writing that address.

DLLs provide a way to modularize applications so that functionality can be updated and
reused more easily. They also help reduce memory overhead when several applications
use the same functionality at the same time, because although each application gets its
own copy of the data, they can share the code.

Dynamic Link Libraries 8

The Windows application programming interface (API) is implemented as a set of
dynamic-link libraries, so any process that uses the Windows API uses dynamic linking.

Dynamic linking allows a module to include only the information needed to locate an
exported DLL function at load time or run time. Dynamic linking differs from the more
familiar static linking, in which the linker copies a library function's code into each
module that calls it.

Types of Dynamic Linking

There are two methods for calling a function in a DLL:

• In load-time dynamic linking, a module makes explicit calls to exported DLL
functions as if they were local functions. This requires you to link the module
with the import library for the DLL that contains the functions. An import library
supplies the system with the information needed to load the DLL and locate the
exported DLL functions when the application is loaded.

• In run-time dynamic linking, a module uses the LoadLibrary or LoadLibraryEx
function to load the DLL at run time. After the DLL is loaded, the module calls
the GetProcAddress function to get the addresses of the exported DLL functions.
The module calls the exported DLL functions using the function pointers returned
by GetProcAddress.

DLLs and Memory Management

Every process that loads the DLL maps it into its virtual address space. After the process
loads the DLL into its virtual address, it can call the exported DLL functions.

The system maintains a per-thread reference count for each DLL. When a thread loads
the DLL, the reference count is incremented by one. When the process terminates, or
when the reference count becomes zero (run-time dynamic linking only), the DLL is
unloaded from the virtual address space of the process.

Like any other function, an exported DLL function runs in the context of the thread that
calls it. Therefore, the following conditions apply:

• The threads of the process that called the DLL can use handles opened by a DLL
function. Similarly, handles opened by any thread of the calling process can be
used in the DLL function.

• The DLL uses the stack of the calling thread and the virtual address space of the
calling process.

• The DLL allocates memory from the virtual address space of the calling process.

Dynamic Link Libraries 9

24.7 DLL Entry Point

The DllMain function is an optional entry point into a dynamic-link library (DLL). If the
function is used, it is called by the system when processes and threads are initialized and
terminated, or upon calls to the LoadLibrary and FreeLibrary functions.

DllMain is a placeholder for the library-defined function name. You must specify the
actual name you use when you build your DLL. For more information, see the
documentation included with your development tools.

BOOL WINAPI DllMain(
 HINSTANCE hinstDLL, /*Handle to the instance of the library*/
 DWORD fdwReason, /*reason of loading and unloading
 LPVOID lpvReserved /*future use or no use des. By Microsoft*/
);

hinstDLL: Handle to the DLL module. The value is the base address of the DLL. The
HINSTANCE of a DLL is the same as the HMODULE of the DLL, so hinstDLL can be
used in calls to functions that require a module handle.
fdwReason: Indicates why the DLL entry-point function is being called. This parameter
can be one of the following values.

Value Meaning

DLL_PROCESS_ATTACH

The DLL is being loaded into the virtual address space
of the current process as a result of the process starting
up or as a result of a call to LoadLibrary. DLLs can
use this opportunity to initialize any instance data or to
use the TlsAlloc function to allocate a thread local
storage (TLS) index.

DLL_THREAD_ATTACH

The current process is creating a new thread. When this
occurs, the system calls the entry-point function of all
DLLs currently attached to the process. The call is
made in the context of the new thread. DLLs can use
this opportunity to initialize a TLS slot for the thread.
A thread calling the DLL entry-point function with
DLL_PROCESS_ATTACH does not call the DLL
entry-point function with DLL_THREAD_ATTACH.

Note that a DLL's entry-point function is called with
this value only by threads created after the DLL is
loaded by the process. When a DLL is loaded using
LoadLibrary, existing threads do not call the entry-
point function of the newly loaded DLL.

DLL_THREAD_DETACH

A thread is exiting cleanly. If the DLL has stored a
pointer to allocated memory in a TLS slot, it should use
this opportunity to free the memory. The system calls
the entry-point function of all currently loaded DLLs

Dynamic Link Libraries 10

with this value. The call is made in the context of the
exiting thread.

DLL_PROCESS_DETACH

The DLL is being unloaded from the virtual address
space of the calling process as a result of
unsuccessfully loading the DLL, termination of the
process, or a call to FreeLibrary. The DLL can use
this opportunity to call the TlsFree function to free any
TLS indices allocated by using TlsAlloc and to free
any thread local data.

Note that the thread that receives the
DLL_PROCESS_DETACH notification is not
necessarily the same thread that received the
DLL_PROCESS_ATTACH notification.

lpvReserved:

If fdwReason is DLL_PROCESS_ATTACH, lpvReserved is NULL for dynamic
loads and non-NULL for static loads.

If fdwReason is DLL_PROCESS_DETACH, lpvReserved is NULL if DllMain
has been called by using FreeLibrary and non-NULL if DllMain has been called
during process termination.

Return Values:

When the system calls the DllMain function with the DLL_PROCESS_ATTACH
value, the function returns TRUE if it succeeds or FALSE if initialization fails. If
the return value is FALSE when DllMain is called because the process uses the
LoadLibrary function, LoadLibrary returns NULL. (The system immediately
calls your entry-point function with DLL_PROCESS_DETACH and unloads the
DLL.) If the return value is FALSE when DllMain is called during process
initialization, the process terminates with an error. To get extended error
information, call GetLastError.

When the system calls the DllMain function with any value other than
DLL_PROCESS_ATTACH, the return value is ignored.

During initial process startup or after a call to LoadLibrary, the system scans the list of
loaded DLLs for the process. For each DLL that has not already been called with the
DLL_PROCESS_ATTACH value, the system calls the DLL's entry-point function. This
call is made in the context of the thread that caused the process address space to change,
such as the primary thread of the process or the thread that called LoadLibrary. Access
to the entry point is serialized by the system on a process-wide basis.

There are cases in which the entry-point function is called for a terminating thread even if
the entry-point function was never called with DLL_THREAD_ATTACH for the thread:

Dynamic Link Libraries 11

• The thread was the initial thread in the process, so the system called the entry-
point function with the DLL_PROCESS_ATTACH value.

• The thread was already running when a call to the LoadLibrary function was
made, so the system never called the entry-point function for it.

When a DLL is unloaded from a process as a result of an unsuccessful load of the DLL,
termination of the process, or a call to FreeLibrary, the system does not call the DLL's
entry-point function with the DLL_THREAD_DETACH value for the individual threads
of the process. The DLL is only sent a DLL_PROCESS_DETACH notification. DLLs
can take this opportunity to clean up all resources for all threads known to the DLL.
However, if the DLL does not successfully complete a DLL_PROCESS_ATTACH
notification, the DLL does not receive either a DLL_THREAD_DETACH or
DLL_PROCESS_DETACH notification.

Warning The entry-point function should perform only simple initialization or
termination tasks. It must not call the LoadLibrary or LoadLibraryEx function (or a
function that calls these functions), because this may create dependency loops in the DLL
load order. This can result in a DLL being used before the system has executed its
initialization code. Similarly, the entry-point function must not call the FreeLibrary
function (or a function that calls FreeLibrary), because this can result in a DLL being
used after the system has executed its termination code.

It is safe to call other functions in Kernel32.dll, because this DLL is guaranteed to be
loaded in the process address space when the entry-point function is called. It is common
for the entry-point function to create synchronization objects such as critical sections and
mutexes, and use TLS. Do not call the registry functions, because they are located in
Advapi32.dll. If you are dynamically linking with the C run-time library, do not call
malloc; instead, call HeapAlloc.

Calling imported functions other than those located in Kernel32.dll may result in
problems that are difficult to diagnose. For example, calling User, Shell, and COM
functions can cause access violation errors, because some functions in their DLLs call
LoadLibrary to load other system components. Conversely, calling those functions
during termination can cause access violation errors because the corresponding
component may already have been unloaded or uninitialized.

Because DLL notifications are serialized, entry-point functions should not attempt to
communicate with other threads or processes. Deadlocks may occur as a result.

24.8 DLL Exports and DLL Imports

The export table How to export and import code (functions) in a DLLs
__declspec(dllimport) int i;
__declspec(dllexport) void function(void);

Dynamic Link Libraries 12

24.9 DLL Function and calling function from in it

LoadLibrary loads a library in process address space.

HMODULE LoadLibrary(
 LPCTSTR lpFileName //file name of module
);

FreeLibrary free the library that was loaded previously by LoadLibrary function.

FreeLibrary(hModule)

Now we call function from library using GetProcAddress. GetProcAddress returns the
address of the function.

FARPROC GetProcAddress(
 HMODULE hModule, // handle to DLL module
 LPCSTR lpProcName // function name
);

Summary
 Dynamic link libraries are the windows executables but these cannot be executed
by writing its name on command line or double clicking on it. These libraries contain
separate modules that load and run in any process address space. Thread is the execution
unit in a Process. A process can have more than one thread. There are two types of
dynamic linking load time dynamic linking and run time dynamic linking. In load time
dynamic linking, a module makes explicit calls to exported DLL functions as if they were
local functions and in run time dynamic linking Load library function is used to load the
library and Get procedure address functions are called to get the address of the function
from loaded library. DLL can export functions in the form definition files. In definition
file we can provide ordinal as well. Ordinal is a number that is used to locate the function
instead of function name.

Exercises
1. Create a dynamic link library and make a function which displays only message

box.
2. Call the function from above library in your executable module the linking must

be dynamic linking.

Chapter 25

25.1 IMPORT LIBRARIES (.LIB) 2
25.2 CALLING CONVENTIONS 2
25.3 VARIABLE SCOPE IN DLL 2
25.4 RESOURCE ONLY DLL 5
25.5 DLL VERSIONS 5
25.6 GET FILE VERSION INFO 5
25.7 THREADS 6
25.7.1 THREADS AND MESSAGE QUEUING 6
25.7.2 CREATING SECONDARY THREAD 7
25.7.3 THREAD ADVANTAGES 7
25.7.4 THREAD DISADVANTAGES 7
SUMMARY 8
EXERCISES 8

Threads and DLLs 2

25.1 Import Libraries (.lib)

Import Library is statically linked to Executable module.

Example of Import libraries in windows are:

• Kernel32.lib
• User32.lib
• Gdi32.lib

Important System DLLs are

• Kernel32.dll
• User32.dll
• Gdi32.dll

25.2 Calling Conventions

Functions used in DLL’s are normally use __stdcall calling convention. __stdcall calling
convention is a standard calling convention used by the APIs in Windows. This calling
convention cleans the stack after returning the called procedure automatically. No extra
code is needed to clean out stack. __stdcall calling convention pushes the arguments in
stack from right to left order.

25.3 Variable Scope in DLL

Variables defined in DLL have scope in memory until the DLL is loaded. After
unloading, the variable scope is vanished. Locally defined variables are accessed within
the DLL only. The variables that are set to export variables can be accessed outside the
DLL if the DLL is statically linked.

Variables can be shared across multiple processes by making the separate data section as
following.

#pragma data_seg([[{ push | pop },] [identifier,]] ["segment-
name" [, "segment-class"])

Specifies the data segment where initialized variables are stored in the .obj file. OBJ files
can be viewed with the dumpbin application. The default segment in the .obj file for
initialized variables is .data. Variables initialized to zero are considered uninitialized and
are stored in .bss.

Threads and DLLs 3

data_seg with no parameters resets the segment to .data.

push (optional)
Puts a record on the internal compiler stack. A push can have an identifier and
segment-name.

pop (optional)
Removes a record from the top of the internal compiler stack.

identifier (optional)
When used with push, assigns a name to the record on the internal compiler stack.
When used with pop, pops records off the internal stack until identifier is
removed; if identifier is not found on the internal stack, nothing is popped.

identifier enables multiple records to be popped with a single pop command.

"segment-name" (optional)
The name of a segment. When used with pop, the stack is popped and segment-
name becomes the active segment name.

Example
// pragma_directive_data_seg.cpp
int h = 1; // stored in .data
int i = 0; // stored in .bss
#pragma data_seg(".my_data1")
int j = 1; // stored in "my_data1"

#pragma data_seg(push, stack1, ".my_data2")
int l = 2; // stored in "my_data2"

#pragma data_seg(pop, stack1) // pop stack1 off the stack
int m = 3; // stored in "stack_data1"

int main() {
}

Data allocated using data_seg does not retain any information about its location.

#pragma comment(linker, “/SECTION: seg_data1, RWS”)

/SECTION:name,[E][R][W][S][D][K][L][P][X][,ALIGN=#]

The /SECTION option changes the attributes of a section, overriding the attributes set
when the .obj file for the section was compiled.

A section in a portable executable (PE) file is roughly equivalent to a segment or the
resources in a new executable (NE) file. Sections contain either code or data. Unlike
segments, sections are blocks of contiguous memory with no size constraints. Some
sections contain code or data that your program declared and uses directly, while other
data sections are created for you by the linker and library manager (lib.exe) and contain
information vital to the operating system.

Threads and DLLs 4

 Do not use the following names, as they will conflict with standard names. For example,
.sdata is used on RISC platforms:

• .arch
• .bss
• .data
• .edata
• .idata
• .pdata
• .rdata
• .reloc
• .rsrc
• .sbss
• .sdata
• .srdata
• .text
• .xdata

Specify one or more attributes for the section. The attribute characters, listed below, are
not case sensitive. You must specify all attributes that you want the section to have; an
omitted attribute character causes that attribute bit to be turned off. If you do not specify
R, W, or E, the existing read, write, or executable status remains unchanged.

The meanings of the attribute characters are shown below.

Character Attribute Meaning
E Execute The section is executable
R Read Allows read operations on data
W Write Allows write operations on data
S Shared Shares the section among all processes that load the

image
D Discardable Marks the section as discardable
K Cacheable Marks the section as not cacheable
L Preload VxD only; marks the section as preload
P Pageable Marks the section as not pageable
X Memory-resident VxD only; marks the section as memory-resident

K and P are peculiar in that the section flags that correspond to them are in the negative
sense. If you specify one of them on the .text section (/SECTION:.text,K), there will be
no difference in the section flags when you run DUMPBIN with the /HEADERS option;
it was already implicitly cached. To remove the default, specify /SECTION:.text,!K and
DUMPBIN will reveal section characteristics, including "Not Cached."

A section in the PE file that does not have E, R, or W set is probably invalid.

Threads and DLLs 5

To set this linker option in the Visual Studio development environment

1. Open the project's Property Pages dialog box.
2. Click the Linker folder.
3. Click the Command Line property page.
4. Type the option into the Additional Options box.

25.4 Resource Only DLL

Resource Only DLL contains only resource of different language and local types.
Resource only DLLs do not contain Entry Point or any DllMain Function.

Use of resource-only DLL is for internationalization.

25.5 DLL Versions

Version information makes it easier for applications to install files properly and enables
setup programs to analyze files currently installed. The version-information resource
contains the file's version number, intended operating system, and original file name.

You can use the version information functions to determine where a file should be
installed and identify conflicts with currently installed files. These functions enable you
to avoid the following problems:

• installing older versions of components over newer versions
• changing the language in a mixed-language system without notification
• installing multiple copies of a library in different directories
• copying files to network directories shared by multiple users

The version information functions enable applications to query a version resource for file
information and present the information in a clear format. This information includes the
file's purpose, author, version number, and so on.

You can add version information to any files that can have Microsoft® Windows®
resources, such as dynamic-link libraries (DLLs), executable files, or font files. To add
the information, create a VERSIONINFO Resource and use the resource compiler to
compile the resource.

25.6 Get File Version Info

The GetFileVersionInfo function retrieves version information for the specified file.

BOOL GetFileVersionInfo(

Threads and DLLs 6

 LPTSTR lptstrFilename, //file name whose version is
to get*/

 DWORD dwHandle, /*unused*/
 DWORD dwLen, /*length of the given buffer*/
 LPVOID lpData /* buffer*/
);

lptstrFilename: Pointer to a null-terminated string that specifies the name of the file of
interest. If a full path is not specified, the function uses the search sequence specified by
the LoadLibrary function.

dwHandle: This parameter is ignored.

dwLen: Specifies the size, in bytes, of the buffer pointed to by the lpData parameter.

Call the GetFileVersionInfoSize function first to determine the size, in bytes, of a
file's version information. The dwLen member should be equal to or greater than
that value.

If the buffer pointed to by lpData is not large enough, the function truncates the
file's version information to the size of the buffer.

lpData: Pointer to a buffer that receives the file-version information.

You can use this value in a subsequent call to the VerQueryValue function to
retrieve data from the buffer.

Return Value:
If the function succeeds, the return value is nonzero.
If the function fails, the return value is zero. To get extended error information,
call GetLastError.

Call the GetFileVersionInfoSize function before calling the GetFileVersionInfo
function. To retrieve information from the file-version information buffer, use the
VerQueryValue function.

25.7 Threads

25.7.1 Threads and Message Queuing

Message Queue is created when every any GDI function call is made or sendmessage or
post message function calls are made. Message Queue can be attached to every thread
either it is User interface thread or worker threads.

User Interface threads always a message queue.

Threads and DLLs 7

Worker threads are initially without message queue.

User Interface threads are those threads which are attached any GUI component such as
window.

When a process start at least one thread is running that first thread is called primary
thread other threads can made, these threads will, then, be called secondary threads.

25.7.2 Creating Secondary Thread
For creating thread we can use following functions:

_beginthread() and _endthread()
This function is a ‘C’ runtime concept from UNIX system
These functions no longer have place in Win32 systems.

The CreateThread API

In windows systems CreateThread API is used to create a thread in a process. Every
thread has its own thread procedure.

• Threads can be stopped and exited using ExitThread API call.

• Thread enters into running state after creating it. For thread not to be run
automatically gives the CREATE_SUSPENDED flag in CreateThread API.

• Threads can be suspended or resumes after their creations by:
• SuspendThread and ResumeThread.

25.7.3 Thread Advantages
Using threads has the following advantages:

1. Threads can be used to start another activity parallel. E.g. saving file on disk,
automatically while you are typing.

2. Perform different calculations parallel.

25.7.4 Thread Disadvantages

Threads major disadvantage is that they make the system slow because thread uses the
time sharing concept that is another name multitasking. A multitasking operating system
divides the available processor time among the processes or threads that need it. The
system is designed for preemptive multitasking; it allocates a processor time slice to each
thread it executes. The currently executing thread is suspended when its time slice
elapses, allowing another thread to run. When the system switches from one thread to

Threads and DLLs 8

another, it saves the context of the preempted thread and restores the saved context of the
next thread in the queue.

The length of the time slice depends on the operating system and the processor. Because
each time slice is small (approximately 20 milliseconds), multiple threads appear to be
executing at the same time. This is actually the case on multiprocessor systems, where the
executable threads are distributed among the available processors.

Note: You must use caution when using multiple threads in an application, because
system performance can decrease if there are too many threads.

Summary
 Multitasking Operating systems are useful to run applications simultaneously.
Threads and processes are the key features of Operating systems. In this lecture we
studied about variable sharing in DLLs, variable scope in DLLs, DLL Versioning,
Resource only DLLs, Threads and their advantages and disadvantages. Many Threads
can work better than using single thread sometime.

Exercises
1. Create a dynamic link library and make a function which displays only message

box. Export the functions using __dllexport.
2. Call the function from above library in your executable module. The linking must

be static linking and use __dllimport.

Chapter 26

26.1 THREAD’S CREATION 2
26.2 THREAD’S EXAMPLE 4
26.2.1 THREAD PROCEDURE 4
26.3 SYNCHRONIZATION 5
26.3.1 OVERLAPPED INPUT AND OUTPUT 5
26.3.2 ASYNCHRONOUS PROCEDURE CALL 7
26.3.3 CRITICAL SECTION 7
26.4 WAIT FUNCTIONS 8
SINGLE-OBJECT WAIT FUNCTIONS 9
MULTIPLE-OBJECT WAIT FUNCTIONS 9
ALERTABLE WAIT FUNCTIONS 9
REGISTERED WAIT FUNCTIONS 10
WAIT FUNCTIONS AND SYNCHRONIZATION OBJECTS 10
WAIT FUNCTIONS AND CREATING WINDOWS 10
26.5 SYNCHRONIZATION OBJECTS 11
26.5.1 MUTEX OBJECT 12
26.6 THREAD EXAMPLE USING MUTEX OBJECT 14
26.7 CHECKING IF THE PREVIOUS APPLICATION IS RUNNING 14
26.8 EVENT OBJECT 15
26.8.1 USING EVENT OBJECT (EXAMPLE) 17
26.9 SEMAPHORE OBJECT 20
26.10 THREAD LOCAL STORAGE (TLS) 22
API IMPLEMENTATION FOR TLS 22
COMPILER IMPLEMENTATION FOR TLS 22
SUMMARY 22
EXERCISES 22

Threads and Synchronization 2

26.1 Thread’s Creation

The CreateThread function creates a thread to execute within the virtual address space
of the calling process.

HANDLE CreateThread(
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 SIZE_T dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId
);

lpThreadAttributes: Pointer to a SECURITY_ATTRIBUTES structure that determines
whether the returned handle can be inherited by child processes. If lpThreadAttributes is
NULL, the handle cannot be inherited.

The lpSecurityDescriptor member of the structure specifies a security descriptor
for the new thread. If lpThreadAttributes is NULL, the thread gets a default
security descriptor. The ACLs in the default security descriptor for a thread come
from the primary or impersonation token of the creator.

dwStackSize: Initial size of the stack, in bytes. The system rounds this value to the nearest
page. If this parameter is zero, the new thread uses the default size for the executable.

lpStartAddress: Pointer to the application-defined function to be executed by the thread
and represents the starting address of the thread.

lpParameter: Pointer to a variable to be passed to the thread.

dwCreationFlags: Flags that control the creation of the thread. If the
CREATE_SUSPENDED flag is specified, the thread is created in a suspended state, and
will not run until the ResumeThread function is called. If this value is zero, the thread
runs immediately after creation.

lpThreadId: Pointer to a variable that receives the thread identifier. If this parameter is
NULL, the thread identifier is not returned.

Return value: If the function succeeds, the return value is a handle to the new thread.

If the function fails, the return value is NULL.

The number of threads a process can create is limited by the available virtual memory. By
default, every thread has one megabyte of stack space. Therefore, you can create at most
2028 threads. If you reduce the default stack size, you can create more threads. However,

Threads and Synchronization 3

your application will have better performance if you create one thread per processor and
build queues of requests for which the application maintains the context information. A
thread would process all requests in a queue before processing requests in the next queue.

The new thread handle is created with the THREAD_ALL_ACCESS access right. If a
security descriptor is not provided, the handle can be used in any function that requires a
thread object handle. When a security descriptor is provided, an access check is
performed on all subsequent uses of the handle before access is granted. If the access
check denies access, the requesting process cannot use the handle to gain access to the
thread. If the thread impersonates a client, then calls CreateThread with a NULL
security descriptor, the thread object created has a default security descriptor which
allows access only to the impersonation token's TokenDefaultDacl owner or members.

The thread execution begins at the function specified by the lpStartAddress parameter. If
this function returns, the DWORD return value is used to terminate the thread in an
implicit call to the ExitThread function. Use the GetExitCodeThread function to get
the thread's return value.

The thread is created with a thread priority of THREAD_PRIORITY_NORMAL. Use the
GetThreadPriority and SetThreadPriority functions to get and set the priority value of
a thread.

When a thread terminates, the thread object attains a signaled state, satisfying any threads
that were waiting on the object.

The thread object remains in the system until the thread has terminated and all handles to
it have been closed through a call to CloseHandle.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a
process that is starting (as the result of a call by CreateProcess) are serialized between
each other within a process. Only one of these events can happen in an address space at a
time. This means that the following restrictions hold:

Do not create a thread while impersonating another user. The call will succeed, however
the newly created thread will have reduced access rights to itself when calling
GetCurrentThread. The access rights granted are derived from the access rights that the
impersonated user has to the process. Some access rights including
THREAD_SET_THREAD_TOKEN and THREAD_GET_CONTEXT may not be
present, leading to unexpected failures.

• During process startup and DLL initialization routines, new threads can be
created, but they do not begin execution until DLL initialization is done for the
process.

• Only one thread in a process can be in a DLL initialization or detach routine at a
time.

Threads and Synchronization 4

• ExitProcess does not return until no threads are in their DLL initialization or
detach routines.

A thread that uses functions from the static C run-time libraries should use the
beginthread and endthread C run-time functions for thread management rather than
CreateThread and ExitThread. Failure to do so results in small memory leaks when
ExitThread is called. Note that this is not a problem with the C run-time in a DLL.

26.2 Thread’s Example

enum Shape { RECTANGLE, ELLIPSE };
DWORD WINAPI drawThread(LPVOID shape);
SYSTEMTIME st;

hThread1 = CreateThread(NULL, 0,
drawThread,
(LPVOID)RECTANGLE, CREATE_SUSPENDED,
&dwThread1
);

hThread2 = CreateThread(NULL, 0,
drawThread, (LPVOID)ELLIPSE,
CREATE_SUSPENDED, &dwThread2
);

hDC = GetDC(hWnd);
hBrushRectangle=CreateSolidBrush(RGB(170,220,160));
hBrushEllipse = CreateHatchBrush(HS_BDIAGONAL,RGB(175,180,225));

InitializeCriticalSection(&cs);

srand((unsigned)time(NULL));
ResumeThread(hThread2);
ResumeThread(hThread1);

26.2.1 Thread Procedure

DWORD WINAPI drawThread(LPVOID type)
{
 int i;

 if((enum Shape)type == RECTANGLE)
 {
 for(i=0; i<10000; ++i)

Threads and Synchronization 5

 {
 EnterCriticalSection(&cs);
 SelectObject(hDC, hBrushRectangle);
Rectangle(hDC, 50, 1, rand()%300, rand()%100);
 GetLocalTime(&st);
 LeaveCriticalSection(&cs);
 Sleep(10);
 }
 }

26.3 Synchronization

Using threads we can use lot of shared variables. These shared variables maybe used by
a single thread further more these variables may also be used and changed by several
parralle threads. If there are several threads operating at the same time then a particular
DC handle can be used in one of the threads only. If we want to use a single DC handle in
more then one thread, we use synchronization objects. Synchronization objects prevent
other threads to use the shared data at the same.

To synchronize access to a resource, use one of the synchronization objects in one of the
wait functions. The state of a synchronization object is either signaled or nonsignaled.
The wait functions allow a thread to block its own execution until a specified nonsignaled
object is set to the signaled state.

26.3.1 Overlapped Input and Output

You can perform either synchronous or asynchronous (or overlapped) I/O operations on
files, named pipes, and serial communications devices. The WriteFile, ReadFile,
DeviceIoControl, WaitCommEvent, ConnectNamedPipe, and TransactNamedPipe
functions can be performed either synchronously or asynchronously. The ReadFileEx
and WriteFileEx functions can be performed asynchronously only.

When a function is executed synchronously, it does not return until the operation has
been completed. This means that the execution of the calling thread can be blocked for an
indefinite period while it waits for a time-consuming operation to finish. Functions called
for overlapped operation can return immediately, even though the operation has not been
completed. This enables a time-consuming I/O operation to be executed in the
background while the calling thread is free to perform other tasks. For example, a single
thread can perform simultaneous I/O operations on different handles, or even
simultaneous read and write operations on the same handle.

To synchronize its execution with the completion of the overlapped operation, the calling
thread uses the GetOverlappedResult function or one of the wait functions to determine
when the overlapped operation has been completed. You can also use the
HasOverlappedIoCompleted macro to poll for completion.

Threads and Synchronization 6

To cancel all pending asynchronous I/O operations, use the CancelIo function. This
function only cancels operations issued by the calling thread for the specified file handle.

Overlapped operations require a file, named pipe, or communications device that was
created with the FILE_FLAG_OVERLAPPED flag. To call a function to perform an
overlapped operation, the calling thread must specify a pointer to an OVERLAPPED
structure. If this pointer is NULL, the function return value may incorrectly indicate that
the operation completed. The system sets the state of the event object to nonsignaled
when a call to the I/O function returns before the operation has been completed. The
system sets the state of the event object to signaled when the operation has been
completed.

When a function is called to perform an overlapped operation, it is possible that the
operation will be completed before the function returns. When this happens, the results
are handled as if the operation had been performed synchronously. If the operation was
not completed, however, the function's return value is FALSE, and the GetLastError
function returns ERROR_IO_PENDING.

A thread can manage overlapped operations by either of two methods:

• Use the GetOverlappedResult function to wait for the overlapped operation to
be completed.

• Specify a handle to the OVERLAPPED structure's manual-reset event object in
one of the wait functions and then call GetOverlappedResult after the wait
function returns. The GetOverlappedResult function returns the results of the
completed overlapped operation, and for functions in which such information is
appropriate, it reports the actual number of bytes that were transferred.

When performing multiple simultaneous overlapped operations, the calling thread must
specify an OVERLAPPED structure with a different manual-reset event object for each
operation. To wait for any one of the overlapped operations to be completed, the thread
specifies all the manual-reset event handles as wait criteria in one of the multiple-object
wait functions. The return value of the multiple-object wait function indicates which
manual-reset event object was signaled, so the thread can determine which overlapped
operation caused the wait operation to be completed.

If no event object is specified in the OVERLAPPED structure, the system signals the
state of the file, named pipe, or communications device when the overlapped operation
has been completed. Thus, you can specify these handles as synchronization objects in a
wait function, though their use for this purpose can be difficult to manage. When
performing simultaneous overlapped operations on the same file, named pipe, or
communications device, there is no way to know which operation caused the object's
state to be signaled. It is safer to use a separate event object for each overlapped
operation.

Threads and Synchronization 7

26.3.2 Asynchronous Procedure Call

An asynchronous procedure call (APC) is a function that executes asynchronously in the
context of a particular thread. When an APC is queued to a thread, the system issues a
software interrupt. The next time the thread is scheduled, it will run the APC function.
APCs made by the system are called "kernel-mode APCs." APCs made by an application
are called "user-mode APCs." A thread must be in an alertable state to run a user-mode
APC.

Each thread has its own APC queue. An application queues an APC to a thread by calling
the QueueUserAPC function. The calling thread specifies the address of an APC
function in the call to QueueUserAPC. The queuing of an APC is a request for the
thread to call the APC function.

When a user-mode APC is queued, the thread to which it is queued is not directed to call
the APC function unless it is in an alertable state. A thread enters an alertable state when
it calls the SleepEx, SignalObjectAndWait, MsgWaitForMultipleObjectsEx,
WaitForMultipleObjectsEx, or WaitForSingleObjectEx function. Note that you
cannot use WaitForSingleObjectEx to wait on the handle to the object for which the
APC is queued. Otherwise, when the asynchronous operation is completed, the handle is
set to the signaled state and the thread is no longer in an alertable wait state, so the APC
function will not be executed. However, the APC is still queued, so the APC function will
be executed if you call another alertable wait function.

Note that the ReadFileEx, SetWaitableTimer, and WriteFileEx functions are
implemented using an APC as the completion notification callback mechanism.

26.3.3 Critical Section

Critical section objects provide synchronization similar to that provided by mutex
objects, except that critical section objects can be used only by the threads of a single
process. Event, mutex, and semaphore objects can also be used in a single-process
application, but critical section objects provide a slightly faster, more efficient
mechanism for mutual-exclusion synchronization (a processor-specific test and set
instruction). Like a mutex object, a critical section object can be owned by only one
thread at a time, which makes it useful for protecting a shared resource from
simultaneous access. There is no guarantee about the order in which threads will obtain
ownership of the critical section; however, the system will be fair to all threads. Unlike a
mutex object, there is no way to tell whether a critical section has been abandoned.

The process is responsible for allocating the memory used by a critical section. Typically,
this is done by simply declaring a variable of type CRITICAL_SECTION. Before the
threads of the process can use it, initialize the critical section by using the
InitializeCriticalSection or InitializeCriticalSectionAndSpinCount function.

Threads and Synchronization 8

A thread uses the EnterCriticalSection or TryEnterCriticalSection function to request
ownership of a critical section. It uses the LeaveCriticalSection function to release
ownership of a critical section. If the critical section object is currently owned by another
thread, EnterCriticalSection waits indefinitely for ownership. In contrast, when a mutex
object is used for mutual exclusion, the wait functions accept a specified time-out
interval. The TryEnterCriticalSection function attempts to enter a critical section
without blocking the calling thread.

Once a thread owns a critical section, it can make additional calls to
EnterCriticalSection or TryEnterCriticalSection without blocking its execution. This
prevents a thread from deadlocking itself while waiting for a critical section that it
already owns. To release its ownership, the thread must call LeaveCriticalSection once
for each time that it entered the critical section.

A thread uses the InitializeCriticalSectionAndSpinCount or
SetCriticalSectionSpinCount function to specify a spin count for the critical section
object. On single-processor systems, the spin count is ignored and the critical section spin
count is set to 0. On multiprocessor systems, if the critical section is unavailable, the
calling thread will spin dwSpinCount times before performing a wait operation on a
semaphore associated with the critical section. If the critical section becomes free during
the spin operation, the calling thread avoids the wait operation.

Any thread of the process can use the DeleteCriticalSection function to release the
system resources that were allocated when the critical section object was initialized. After
this function has been called, the critical section object can no longer be used for
synchronization.

When a critical section object is owned, the only other threads affected are those waiting
for ownership in a call to EnterCriticalSection. Threads that are not waiting are free to
continue running.

26.4 Wait Functions

The wait functions to allow a thread to block its own execution. The wait functions do not
return until the specified criteria have been met. The type of wait function determines the
set of criteria used. When a wait function is called, it checks whether the wait criteria
have been met. If the criteria have not been met, the calling thread enters the wait state. It
uses no processor time while waiting for the criteria to be met.

There are four types of wait functions:

• single-object
• multiple-object
• alertable
• registered

Threads and Synchronization 9

Single-object Wait Functions

The SignalObjectAndWait, WaitForSingleObject, and WaitForSingleObjectEx
functions require a handle to one synchronization object. These functions return when
one of the following occurs:

• The specified object is in the signaled state.
• The time-out interval elapses. The time-out interval can be set to INFINITE to

specify that the wait will not time out.

The SignalObjectAndWait function enables the calling thread to atomically set the state
of an object to signaled and wait for the state of another object to be set to signaled.

Multiple-object Wait Functions

The WaitForMultipleObjects, WaitForMultipleObjectsEx,
MsgWaitForMultipleObjects, and MsgWaitForMultipleObjectsEx functions enable
the calling thread to specify an array containing one or more synchronization object
handles. These functions return when one of the following occurs:

• The state of any one of the specified objects is set to signaled or the states of all
objects have been set to signaled. You control whether one or all of the states will
be used in the function call.

• The time-out interval elapses. The time-out interval can be set to INFINITE to
specify that the wait will not time out.

The MsgWaitForMultipleObjects and MsgWaitForMultipleObjectsEx function allow
you to specify input event objects in the object handle array. This is done when you
specify the type of input to wait for in the thread's input queue.

For example, a thread could use MsgWaitForMultipleObjects to block its execution
until the state of a specified object has been set to signaled and there is mouse input
available in the thread's input queue. The thread can use the GetMessage or
PeekMessage function to retrieve the input.

When waiting for the states of all objects to be set to signaled, these multiple-object
functions do not modify the states of the specified objects until the states of all objects
have been set signaled. For example, the state of a mutex object can be signaled, but the
calling thread does not get ownership until the states of the other objects specified in the
array have also been set to signaled. In the meantime, some other thread may get
ownership of the mutex object, thereby setting its state to nonsignaled.

Alertable Wait Functions

The MsgWaitForMultipleObjectsEx, SignalObjectAndWait,
WaitForMultipleObjectsEx, and WaitForSingleObjectEx functions differ from the

Threads and Synchronization 10

other wait functions in that they can optionally perform an alertable wait operation. In an
alertable wait operation, the function can return when the specified conditions are met,
but it can also return if the system queues an I/O completion routine or an APC for
execution by the waiting thread. For more information about alertable wait operations
and I/O completion routines. See Synchronization and Overlapped Input and Output. For
more information about APCs, see Asynchronous Procedure Calls that is already
described in our above section Synchronization.

Registered Wait Functions

The RegisterWaitForSingleObject function differs from the other wait functions in that
the wait operation is performed by a thread from the thread pool. When the specified
conditions are met, the callback function is executed by a worker thread from the thread
pool.

By default, a registered wait operation is a multiple-wait operation. The system resets the
timer every time the event is signaled (or the time-out interval elapses) until you call the
UnregisterWaitEx function to cancel the operation. To specify that a wait operation
should be executed only once, set the dwFlags parameter of
RegisterWaitForSingleObject to WT_EXECUTEONLYONCE.

Wait Functions and Synchronization Objects

The wait functions can modify the states of some types of synchronization objects.
Modification occurs only for the object or objects whose signaled state caused the
function to return. Wait functions can modify the states of synchronization objects as
follows:

• The count of a semaphore object decreases by one, and the state of the semaphore
is set to nonsignaled if its count is zero.

• The states of mutex, auto-reset event, and change-notification objects are set to
nonsignaled.

• The state of a synchronization timer is set to nonsignaled.
• The states of manual-reset event, manual-reset timer, process, thread, and console

input objects are not affected by a wait function.

Wait Functions and Creating Windows

You have to be careful when using the wait functions and code that directly or indirectly
creates windows. If a thread creates any windows, it must process messages. Message
broadcasts are sent to all windows in the system. If you have a thread that uses a wait
function with no time-out interval, the system will deadlock. Two examples of code that
indirectly creates windows are DDE and COM CoInitialize. Therefore, if you have a
thread that creates windows, use MsgWaitForMultipleObjects or
MsgWaitForMultipleObjectsEx, rather than the other wait functions.

Threads and Synchronization 11

26.5 Synchronization Objects

A synchronization object is an object whose handle can be specified in one of the wait
functions to coordinate the execution of multiple threads. More than one process can have
a handle to the same synchronization object, making interprocess synchronization
possible.

The following object types are provided exclusively for synchronization.

Type Description
Event Notifies one or more waiting threads that an event has occurred.

Mutex Can be owned by only one thread at a time, enabling threads to coordinate
mutually exclusive access to a shared resource.

Semaphore Maintains a count between zero and some maximum value, limiting the
number of threads that are simultaneously accessing a shared resource.

Waitable
timer Notifies one or more waiting threads that a specified time has arrived.

Though available for other uses, the following objects can also be used for
synchronization.

Object Description

Change
notification

Created by the FindFirstChangeNotification function, its state is set to
signaled when a specified type of change occurs within a specified
directory or directory tree.

Console input

Created when a console is created. The handle to console input is returned
by the CreateFile function when CONIN$ is specified, or by the
GetStdHandle function. Its state is set to signaled when there is unread
input in the console's input buffer, and set to nonsignaled when the input
buffer is empty.

Job
Created by calling the CreateJobObject function. The state of a job object
is set to signaled when all its processes are terminated because the
specified end-of-job time limit has been exceeded.

Memory
resource
notification

Created by the CreateMemoryResourceNotification function. Its state is
set to signaled when a specified type of change occurs within physical
memory.

Process
Created by calling the CreateProcess function. Its state is set to
nonsignaled while the process is running, and set to signaled when the
process terminates.

Thread

Created when a new thread is created by calling the CreateProcess,
CreateThread, or CreateRemoteThread function. Its state is set to
nonsignaled while the thread is running, and set to signaled when the
thread terminates.

Threads and Synchronization 12

In some circumstances, you can also use a file, named pipe, or communications device as
a synchronization object; however, their use for this purpose is discouraged. Instead, use
asynchronous I/O and wait on the event object set in the OVERLAPPED structure. It is
safer to use the event object because of the confusion that can occur when multiple
simultaneous overlapped operations are performed on the same file, named pipe, or
communications device. In this situation, there is no way to know which operation caused
the object's state to be signaled.

26.5.1 Mutex Object

The CreateMutex function creates or opens a named or unnamed mutex object.

HANDLE CreateMutex(
 LPSECURITY_ATTRIBUTES lpMutexAttributes,/*null if default security
attributes*/
 BOOL bInitialOwner, /*is the current thread is the initialize owner*/
 LPCTSTR lpName /*name of the named mutex object*/
);

lpMutexAttributes: Pointer to a SECURITY_ATTRIBUTES structure that determines
whether the returned handle can be inherited by child processes. If lpMutexAttributes is
NULL, the handle cannot be inherited.

The lpSecurityDescriptor member of the structure specifies a security descriptor
for the new mutex. If lpMutexAttributes is NULL, the mutex gets a default
security descriptor. The ACLs in the default security descriptor for a mutex come
from the primary or impersonation token of the creator.

bInitialOwner: If this value is TRUE and the caller created the mutex, the calling thread
obtains initial ownership of the mutex object. Otherwise, the calling thread does not
obtain ownership of the mutex.

lpName: Pointer to a null-terminated string specifying the name of the mutex object. The
name is limited to MAX_PATH characters. Name comparison is case sensitive.

If lpName matches the name of an existing named mutex object, this function
requests the MUTEX_ALL_ACCESS access right. In this case, the bInitialOwner
parameter is ignored because it has already been set by the creating process. If the
lpMutexAttributes parameter is not NULL, it determines whether the handle can
be inherited, but its security-descriptor member is ignored.

If lpName is NULL, the mutex object is created without a name.

If lpName matches the name of an existing event, semaphore, waitable timer, job,
or file-mapping object, the function fails and the GetLastError function returns
ERROR_INVALID_HANDLE. This occurs because these objects share the same
name space.

Threads and Synchronization 13

Terminal Services: The name can have a "Global\" or "Local\" prefix to
explicitly create the object in the global or session name space. The remainder of
the name can contain any character except the backslash character (\).

Return Values:
If the function succeeds, the return value is a handle to the mutex object. If the
named mutex object existed before the function call, the function returns a handle
to the existing object and GetLastError returns ERROR_ALREADY_EXISTS.
Otherwise, the caller created the mutex.

The handle returned by CreateMutex has the MUTEX_ALL_ACCESS access right and
can be used in any function that requires a handle to a mutex object.

Any thread of the calling process can specify the mutex-object handle in a call to one of
the wait functions. The single-object wait functions return when the state of the specified
object is signaled. The multiple-object wait functions can be instructed to return either
when any one or when all of the specified objects are signaled. When a wait function
returns, the waiting thread is released to continue its execution.

The state of a mutex object is signaled when it is not owned by any thread. The creating
thread can use the bInitialOwner flag to request immediate ownership of the mutex.
Otherwise, a thread must use one of the wait functions to request ownership. When the
mutex's state is signaled, one waiting thread is granted ownership, the mutex's state
changes to nonsignaled, and the wait function returns. Only one thread can own a mutex
at any given time. The owning thread uses the ReleaseMutex function to release its
ownership.

The thread that owns a mutex can specify the same mutex in repeated wait function calls
without blocking its execution. Typically, you would not wait repeatedly for the same
mutex, but this mechanism prevents a thread from deadlocking itself while waiting for a
mutex that it already owns. However, to release its ownership, the thread must call
ReleaseMutex once for each time that the mutex satisfied a wait.

Two or more processes can call CreateMutex to create the same named mutex. The first
process actually creates the mutex, and subsequent processes open a handle to the
existing mutex. This enables multiple processes to get handles of the same mutex, while
relieving the user of the responsibility of ensuring that the creating process is started first.
When using this technique, you should set the bInitialOwner flag to FALSE; otherwise, it
can be difficult to be certain which process has initial ownership.

Multiple processes can have handles of the same mutex object, enabling use of the object
for interprocess synchronization. The following object-sharing mechanisms are available:

• A child process created by the CreateProcess function can inherit a handle to a
mutex object if the lpMutexAttributes parameter of CreateMutex enabled
inheritance.

Threads and Synchronization 14

• A process can specify the mutex-object handle in a call to the DuplicateHandle
function to create a duplicate handle that can be used by another process.

• A process can specify the name of a mutex object in a call to the OpenMutex or
CreateMutex function.

Use the CloseHandle function to close the handle. The system closes the handle
automatically when the process terminates. The mutex object is destroyed when its last
handle has been closed.

26.6 Thread Example Using Mutex Object

hThread1= CreateThread(NULL, 0, drawThread, (LPVOID)RECTANGLE,
CREATE_SUSPENDED, &dwThread1);

hThread2 =

hBrushRectangle = CreateSolidBrush(RGB(170,220,160));
hBrushEllipse=CreateHatchBrush(HS_BDIAGONAL,RGB(175,180,225));

hMutex=CreateMutex(NULL, 0, NULL);

srand((unsigned)time(NULL));
ResumeThread(hThread2);

for(i=0; i<10000; ++i)
{
Switch(WaitForSingleObject(hMutex, INFINITE))
{
 case WAIT_OBJECT_0:
 SelectObject(hDC, hBrushRectangle);
 Rectangle(hDC, 50, 1, rand()%300, rand()%100);
 GetLocalTime(&st);
ReleaseMutex(hMutex);
Sleep(10);

};

26.7 Checking if the previous application is running

Using Named Mutex object you can check the application instance whether it is already
running or not. Recreating the named mutex open the previous mutex object but set last
error to ERROR_ALREADY_EXIST. You can check GetLastError if it is
ERROR_ALREADY_EXIST, then it is already running.

Threads and Synchronization 15

26.8 Event Object

The CreateEvent function creates or opens a named or unnamed event object.

HANDLE CreateEvent(
 LPSECURITY_ATTRIBUTES lpEventAttributes, /*null for the default
security */
 BOOL bManualReset, /*manual reset or automatically reset its state*/
 BOOL bInitialState, /*set initialize state signaled or unsignalled*/
 LPCTSTR lpName /* nanme of the event object*/
);

lpEventAttributes: Pointer to a SECURITY_ATTRIBUTES structure that determines
whether the returned handle can be inherited by child processes. If lpEventAttributes is
NULL, the handle cannot be inherited.

The lpSecurityDescriptor member of the structure specifies a security descriptor
for the new event. If lpEventAttributes is NULL, the event gets a default security
descriptor. The ACLs in the default security descriptor for an event come from the
primary or impersonation token of the creator.

bManualReset: If this parameter is TRUE, the function creates a manual-reset event
object which requires use of the ResetEvent function set the state to nonsignaled. If this
parameter is FALSE, the function creates an auto-reset event object, and system
automatically resets the state to nonsignaled after a single waiting thread has been
released.

bInitialState: If this parameter is TRUE, the initial state of the event object is signaled;
otherwise, it is nonsignaled.

lpName: Pointer to a null-terminated string specifying the name of the event object. The
name is limited to MAX_PATH characters. Name comparison is case sensitive.

If lpName matches the name of an existing named event object, this function
requests the EVENT_ALL_ACCESS access right. In this case, the bManualReset
and bInitialState parameters are ignored because they have already been set by the
creating process. If the lpEventAttributes parameter is not NULL, it determines
whether the handle can be inherited, but its security-descriptor member is ignored.

If lpName is NULL, the event object is created without a name.

If lpName matches the name of an existing semaphore, mutex, waitable timer, job,
or file-mapping object, the function fails and the GetLastError function returns
ERROR_INVALID_HANDLE. This occurs because these objects share the same
name space.

Threads and Synchronization 16

Return Values:
If the function succeeds, the return value is a handle to the event object. If the
named event object existed before the function call, the function returns a handle
to the existing object and GetLastError returns ERROR_ALREADY_EXISTS.

The handle returned by CreateEvent has the EVENT_ALL_ACCESS access right and
can be used in any function that requires a handle to an event object.

Any thread of the calling process can specify the event-object handle in a call to one of
the wait functions. The single-object wait functions return when the state of the specified
object is signaled. The multiple-object wait functions can be instructed to return either
when any one or when all of the specified objects are signaled. When a wait function
returns, the waiting thread is released to continue its execution.

The initial state of the event object is specified by the bInitialState parameter. Use the
SetEvent function to set the state of an event object to signaled. Use the ResetEvent
function to reset the state of an event object to nonsignaled.

When the state of a manual-reset event object is signaled, it remains signaled until it is
explicitly reset to nonsignaled by the ResetEvent function. Any number of waiting
threads, or threads that subsequently begin wait operations for the specified event object,
can be released while the object's state is signaled.

When the state of an auto-reset event object is signaled, it remains signaled until a single
waiting thread is released; the system then automatically resets the state to nonsignaled. If
no threads are waiting, the event object's state remains signaled.

Multiple processes can have handles of the same event object, enabling use of the object
for interprocess synchronization. The following object-sharing mechanisms are available:

• A child process created by the CreateProcess function can inherit a handle to an
event object if the lpEventAttributes parameter of CreateEvent enabled
inheritance.

• A process can specify the event-object handle in a call to the DuplicateHandle
function to create a duplicate handle that can be used by another process.

• A process can specify the name of an event object in a call to the OpenEvent or
CreateEvent function.

Use the CloseHandle function to close the handle. The system closes the handle
automatically when the process terminates. The event object is destroyed when its last
handle has been closed.

Threads and Synchronization 17

26.8.1 Using Event Object (Example)

Applications use event objects in a number of situations to notify a waiting thread of the
occurrence of an event. For example, overlapped I/O operations on files, named pipes,
and communications devices use an event object to signal their completion.

In the following example, an application uses event objects to prevent several threads
from reading from a shared memory buffer while a master thread is writing to that buffer.
First, the master thread uses the CreateEvent function to create a manual-reset event
object. The master thread sets the event object to non-signaled when it is writing to the
buffer and then resets the object to signaled when it has finished writing. Then it creates
several reader threads and an auto-reset event object for each thread. Each reader thread
sets its event object to signaled when it is not reading from the buffer.

#define NUMTHREADS 4

HANDLE hGlobalWriteEvent;

void CreateEventsAndThreads(void)
{
 HANDLE hReadEvents[NUMTHREADS], hThread;
 DWORD i, IDThread;

 // Create a manual-reset event object. The master thread sets
 // this to nonsignaled when it writes to the shared buffer.

 hGlobalWriteEvent = CreateEvent(
 NULL, // no security attributes
 TRUE, // manual-reset event
 TRUE, // initial state is signaled
 "WriteEvent" // object name
);

 if (hGlobalWriteEvent == NULL)
 {
 // error exit
 }

 // Create multiple threads and an auto-reset event object
 // for each thread. Each thread sets its event object to
 // signaled when it is not reading from the shared buffer.

 for(i = 1; i <= NUMTHREADS; i++)
 {
 // Create the auto-reset event.
 hReadEvents[i] = CreateEvent(
 NULL, // no security attributes
 FALSE, // auto-reset event
 TRUE, // initial state is signaled
 NULL); // object not named

 if (hReadEvents[i] == NULL)
 {

Threads and Synchronization 18

 // Error exit.
 }

 hThread = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE) ThreadFunction,
 &hReadEvents[i], // pass event handle
 0, &IDThread);
 if (hThread == NULL)
 {
 // Error exit.
 }
 }
}

Before the master thread writes to the shared buffer, it uses the ResetEvent function to
set the state of hGlobalWriteEvent (an application-defined global variable) to
nonsignaled. This blocks the reader threads from starting a read operation. The master
then uses the WaitForMultipleObjects function to wait for all reader threads to finish
any current read operations. When WaitForMultipleObjects returns, the master thread
can safely write to the buffer. After it has finished, it sets hGlobalWriteEvent and all the
reader-thread events to signaled, enabling the reader threads to resume their read
operations.

VOID WriteToBuffer(VOID)
{
 DWORD dwWaitResult, i;

 // Reset hGlobalWriteEvent to nonsignaled, to block readers.

 if (! ResetEvent(hGlobalWriteEvent))
 {
 // Error exit.
 }

 // Wait for all reading threads to finish reading.

 dwWaitResult = WaitForMultipleObjects(
 NUMTHREADS, // number of handles in array
 hReadEvents, // array of read-event handles
 TRUE, // wait until all are signaled
 INFINITE); // indefinite wait

 switch (dwWaitResult)
 {
 // All read-event objects were signaled.
 case WAIT_OBJECT_0:
 // Write to the shared buffer.
 break;

 // An error occurred.
 default:
 printf("Wait error: %d\n", GetLastError());
 ExitProcess(0);
 }

Threads and Synchronization 19

 // Set hGlobalWriteEvent to signaled.

 if (! SetEvent(hGlobalWriteEvent))
 {
 // Error exit.
 }

 // Set all read events to signaled.
 for(i = 1; i <= NUMTHREADS; i++)
 if (! SetEvent(hReadEvents[i]))
 {
 // Error exit.
 }
}

Before starting a read operation, each reader thread uses WaitForMultipleObjects to
wait for the application-defined global variable hGlobalWriteEvent and its own read
event to be signaled. When WaitForMultipleObjects returns, the reader thread's auto-
reset event has been reset to nonsignaled. This blocks the master thread from writing to
the buffer until the reader thread uses the SetEvent function to set the event's state back
to signaled.

VOID ThreadFunction(LPVOID lpParam)
{
 DWORD dwWaitResult;
 HANDLE hEvents[2];

 hEvents[0] = *(HANDLE*)lpParam; // thread's read event
 hEvents[1] = hGlobalWriteEvent;

 dwWaitResult = WaitForMultipleObjects(
 2, // number of handles in array
 hEvents, // array of event handles
 TRUE, // wait till all are signaled
 INFINITE); // indefinite wait

 switch (dwWaitResult)
 {
 // Both event objects were signaled.
 case WAIT_OBJECT_0:
 // Read from the shared buffer.
 break;

 // An error occurred.
 default:
 printf("Wait error: %d\n", GetLastError());
 ExitThread(0);
 }
 // Set the read event to signaled.
 if (! SetEvent(hEvents[0]))
 {
 // Error exit.
 }
}

Threads and Synchronization 20

26.9 Semaphore Object

The CreateSemaphore function creates or opens a named or unnamed semaphore object.

HANDLE CreateSemaphore(
 LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,
 LONG lInitialCount,
 LONG lMaximumCount,
 LPCTSTR lpName
);

lpSemaphoreAttributes: Pointer to a SECURITY_ATTRIBUTES structure that
determines whether the returned handle can be inherited by child processes. If
lpSemaphoreAttributes is NULL, the handle cannot be inherited.

The lpSecurityDescriptor member of the structure specifies a security descriptor
for the new semaphore. If lpSemaphoreAttributes is NULL, the semaphore gets a
default security descriptor. The ACLs in the default security descriptor for a
semaphore come from the primary or impersonation token of the creator.

lInitialCount: Initial count for the semaphore object. This value must be greater than or
equal to zero and less than or equal to lMaximumCount. The state of a semaphore is
signaled when its count is greater than zero and nonsignaled when it is zero. The count is
decreased by one whenever a wait function releases a thread that was waiting for the
semaphore. The count is increased by a specified amount by calling the
ReleaseSemaphore function.

lMaximumCount: Maximum count for the semaphore object. This value must be greater
than zero.

lpName: Pointer to a null-terminated string specifying the name of the semaphore object.
The name is limited to MAX_PATH characters. Name comparison is case sensitive.

If lpName matches the name of an existing named semaphore object, this function
requests the SEMAPHORE_ALL_ACCESS access right. In this case, the
lInitialCount and lMaximumCount parameters are ignored because they have
already been set by the creating process. If the lpSemaphoreAttributes parameter
is not NULL, it determines whether the handle can be inherited, but its security-
descriptor member is ignored.

If lpName is NULL, the semaphore object is created without a name.

If lpName matches the name of an existing event, mutex, waitable timer, job, or
file-mapping object, the function fails and the GetLastError function returns
ERROR_INVALID_HANDLE. This occurs because these objects share the same
name space.

Threads and Synchronization 21

Return Values:

If the function succeeds, the return value is a handle to the semaphore object. If
the named semaphore object existed before the function call, the function returns
a handle to the existing object and GetLastError returns
ERROR_ALREADY_EXISTS.

If the function fails, the return value is NULL. To get extended error information,
call GetLastError.

The handle returned by CreateSemaphore has the SEMAPHORE_ALL_ACCESS
access right and can be used in any function that requires a handle to a semaphore object.

Any thread of the calling process can specify the semaphore-object handle in a call to one
of the wait functions. The single-object wait functions return when the state of the
specified object is signaled. The multiple-object wait functions can be instructed to return
either when any one or when all of the specified objects are signaled. When a wait
function returns, the waiting thread is released to continue its execution.

The state of a semaphore object is signaled when its count is greater than zero, and
nonsignaled when its count is equal to zero. The lInitialCount parameter specifies the
initial count. Each time a waiting thread is released because of the semaphore's signaled
state, the count of the semaphore is decreased by one. Use the ReleaseSemaphore
function to increment a semaphore's count by a specified amount. The count can never be
less than zero or greater than the value specified in the lMaximumCount parameter.

Multiple processes can have handles of the same semaphore object, enabling use of the
object for interprocess synchronization. The following object-sharing mechanisms are
available:

• A child process created by the CreateProcess function can inherit a handle to a
semaphore object if the lpSemaphoreAttributes parameter of CreateSemaphore
enabled inheritance.

• A process can specify the semaphore-object handle in a call to the
DuplicateHandle function to create a duplicate handle that can be used by
another process.

• A process can specify the name of a semaphore object in a call to the
OpenSemaphore or CreateSemaphore function.

Use the CloseHandle function to close the handle. The system closes the handle
automatically when the process terminates. The semaphore object is destroyed when its
last handle has been closed.

Threads and Synchronization 22

26.10 Thread Local Storage (TLS)

Thread Local Storage (TLS) is the method by which each thread in a given multithreaded
process may allocate locations in which to store thread-specific data. Dynamically bound
(run-time) thread-specific data is supported by way of the TLS API (TlsAlloc,
TlsGetValue, TlsSetValue, TlsFree). Win32 and the Visual C++ compiler, now support
statically bound (load-time) per-thread data in addition to the existing API
implementation.

API Implementation for TLS

Thread Local Storage is implemented through the Win32 API layer as well as the
compiler. For details, see the Win32 API documentation for TlsAlloc, TlsGetValue,
TlsSetValue, and TlsFree.

The Visual C++ compiler includes a keyword to make thread local storage operations
more automatic, rather than through the API layer. This syntax is described in the next
section, Compiler Implementation for TLS.

Compiler Implementation for TLS

To support TLS, a new attribute, thread, has been added to the C and C++ languages and
is supported by the Visual C++ compiler. This attribute is an extended storage class
modifier, as described in the previous section. Use the __declspec keyword to declare a
thread variable. For example, the following code declares an integer thread local variable
and initializes it with a value:

__declspec(thread) int tls_i = 1;

Summary

 In this lecture, we studied about Threads and synchronization. To synchronize
access to a resource, use one of the synchronization objects in one of the wait functions.
The state of a synchronization object is either signaled or nonsignaled. The wait
functions allow a thread to block its own execution until a specified nonsignaled object is
set to the signaled state. Critical section objects provide synchronization similar to that
provided by mutex objects, except that critical section objects can be used only by the
threads of a single process. Event, mutex, and semaphore objects can also be used in a
single-process. Another synchronization object is semaphore, events and mutex. Threads
with synchronization problems have the best use in network applications.

Exercises
1. Create Thread to find factorial of any number.

Chapter 27

27.1 INTRODUCTION 2
27.2 WELL KNOWN PROTOCOLS 2
27.3 DNS (DOMAIN NAME SYSTEMS) 2
27.4 WELL KNOWN HOST NAMES ON THE INTERNET 3
27.5 WINDOWS SOCKETS 3
27.6 BASIC SOCKETS OPERATIONS 3
27.7 WINDOWS SOCKET LIBRARY 4
27.8 WINSOCK INITIALIZATION 4
Example Code 6
SUMMARY 7
EXERCISES 7

Network Programming Part I 2

27.1 Introduction

Following are the some of the concept of packet information. These concepts will be used
in network programming.

• IP addresses and ports
• The structure of an IP packet
• Protocol
• Connection-oriented vs. datagram protocols
• IP, TCP and UDP
• HTTP, other wrapper protocols

27.2 Well known Protocols
Following are the well known protocols used today.

27.3 DNS (Domain Name Systems)

Domain Name System (DNS), the locator service of choice in Microsoft® Windows®,
is an industry-standard protocol that locates computers on an IP-based network. IP
networks such as the Internet and Windows networks rely on number-based
addresses to process information. Users however, are better at remembering letter-
based addresses, so it is necessary to translate user-friendly names
http://www.vu.edu.pk into addresses that the network can recognize
(203.215.177.33).

Domain Name System, DNS, is an industry-standard protocol used to locate
computers on an IP-based network. Users are better at remembering friendly names,
such as www.microsoft.com or msdn.microsoft.com, than number-based addresses,
such as 207.46.131.137.

IP networks, such as the Internet and Microsoft® Windows® 2000 networks rely on
number-based addresses to ferry information throughout the network; therefore, it is
necessary to translate user-friendly names (www.microsoft.com) into addresses that

Ports Name

80 http
25 SMTP
110 POP3
43 WHOIS
53 DNS
21 FTP

Network Programming Part I 3

the network can recognize (207.46.131.137). DNS is the service of choice in
Windows 2000 to locate such resources and translate them into IP addresses.

DNS is the primary locator service for Active Directory, and therefore, DNS can be
considered a base service for both Windows 2000 and Active Directory.
Windows 2000 provides functions that enable application programmers to use DNS
functions such as programmatically making DNS queries, comparing records, and
looking up names.

27.4 Well known host names on the internet

• www.vu.edu.pk 203.215.177.33
• www.yahoo.com 64.58.76.179
• www.most.gov.pk 66.96.232.41
• www.pak.gov.pk 66.197.42.253
• www.google.com 216.239.53.100
• www.whois.net 128.121.95.59

27.5 Windows Sockets

Windows Sockets (Winsock) enables programmers to create advanced Internet,
intranet, and other network-capable applications to transmit application data across
the wire, independent of the network protocol being used. With Winsock,
programmers are provided access to advanced Microsoft® Windows® networking
capabilities such as multicast and Quality of Service (QOS).

Winsock follows the Windows Open System Architecture (WOSA) model; it defines a
standard service provider interface (SPI) between the application programming
interface (API), with its exported functions and the protocol stacks. It uses the
sockets paradigm that was first popularized by Berkeley Software Distribution (BSD)
UNIX. It was later adapted for Windows in Windows Sockets 1.1, with which
Windows Sockets 2 applications are backward compatible. Winsock programming
previously centered on TCP/IP. Some programming practices that worked with
TCP/IP do not work with every protocol. As a result, the Windows Sockets 2 API adds
functions where necessary to handle several protocols.

27.6 Basic Sockets Operations

The following are the basic operations performed by both server and client systems.

1. Create an unbound socket
2. Binding Server
3. Connecting Client
4. Listen
5. Accept
6. Send
7. Receive

Network Programming Part I 4

27.7 Windows Socket Library

File Purpose

ws2_32.dll Main WinSock 2 DLL
wsock32.dll For WinSock 1.1 support, 32-bit applications
mswsock.dll MS extensions to WinSock
winsock.dll For WinSock 1.1 support, 16-bit applications
ws2help.dll WinSock2 helper
ws2tcpip.dll WinSock 2 helper for TCP/IP stacks

These files are windows socket libraries.

27.8 WinSock Initialization

The WSAStartup function initiates use of WS2_32.DLL by a process.

int WSAStartup(
 WORD wVersionRequested, /*MAKEWORD(2,2)*/
 LPWSADATA lpWSAData /*POINTER TO THE WSADATA structure
);

wVersionRequested: Highest version of Windows Sockets support that the caller can use.
The high-order byte specifies the minor version (revision) number; the low-order byte
specifies the major version number.
lpWSAData: Pointer to the WSADATA data structure that is to receive details of the
Windows Sockets implementation.

Return Values: The WSAStartup function returns zero if successful. Otherwise, it
returns one of the error codes listed in the following.
An application cannot call WSAGetLastError to determine the error code as is
normally done in Windows Sockets if WSAStartup fails. The WS2_32.DLL will not
have been loaded in the case of a failure so the client data area where the last error
information is stored could not be established.

Error code Meaning

WSASYSNOTREADY Indicates that the underlying network subsystem is not
ready for network communication.

WSAVERNOTSUPPORTED
The version of Windows Sockets support requested is not
provided by this particular Windows Sockets
implementation.

WSAEINPROGRESS A blocking Windows Sockets 1.1 operation is in progress.

WSAEPROCLIM Limit on the number of tasks supported by the Windows
Sockets implementation has been reached.

WSAEFAULT The lpWSAData is not a valid pointer.

Network Programming Part I 5

The WSAStartup function must be the first Windows Sockets function called by an
application or DLL. It allows an application or DLL to specify the version of Windows
Sockets required and retrieve details of the specific Windows Sockets implementation.
The application or DLL can only issue further Windows Sockets functions after
successfully calling WSAStartup.

In order to support future Windows Sockets implementations and applications that can
have functionality differences from the current version of Windows Sockets, a
negotiation takes place in WSAStartup. The caller of WSAStartup and the
WS2_32.DLL indicate to each other the highest version that they can support, and each
confirms that the other's highest version is acceptable. Upon entry to WSAStartup, the
WS2_32.DLL examines the version requested by the application. If this version is equal
to or higher than the lowest version supported by the DLL, the call succeeds and the DLL
returns in wHighVersion the highest version it supports and in wVersion the minimum of
its high version and wVersionRequested. The WS2_32.DLL then assumes that the
application will use wVersion If the wVersion parameter of the WSADATA structure is
unacceptable to the caller, it should call WSACleanup and either search for another
WS2_32.DLL or fail to initialize.

It is legal and possible for an application written to this version of the specification to
successfully negotiate a higher version number version. In that case, the application is
only guaranteed access to higher-version functionality that fits within the syntax defined
in this version, such as new Ioctl codes and new behavior of existing functions. New
functions may be inaccessible. To get full access to the new syntax of a future version,
the application must fully conform to that future version, such as compiling against a new
header file, linking to a new library, or other special cases.

This negotiation allows both a WS2_32.DLL and a Windows Sockets application to
support a range of Windows Sockets versions. An application can use WS2_32.DLL if
there is any overlap in the version ranges. The following table shows how WSAStartup
works with different applications and WS2_32.DLL versions.

App
versions

DLL
versions

wVersion
requested

wVersion wHigh
version

End result

1.1 1.1 1.1 1.1 1.1 use 1.1
1.0 1.1 1.0 1.1 1.0 1.0 use 1.0

1.0 1.0 1.1 1.0 1.0 1.1 use 1.0
1.1 1.0 1.1 1.1 1.1 1.1 use 1.1
1.1 1.0 1.1 1.0 1.0 Application fails
1.0 1.1 1.0 --- --- WSAVERNOTSUPPO

RTED
1.0 1.1 1.0 1.1 1.1 1.1 1.1 use 1.1
1.1 2.0 1.1 2.0 1.1 1.1 use 1.1

2.0 2.0 2.0 2.0 2.0 use 2.0

Network Programming Part I 6

Example Code
The following code fragment demonstrates how an application that supports only version
2.2 of Windows Sockets makes a WSAStartup call:

WORD wVersionRequested;
WSADATA wsaData;
int err;

wVersionRequested = MAKEWORD(2, 2);

err = WSAStartup(wVersionRequested, &wsaData);
if (err != 0) {
 /* Tell the user that we could not find a usable */
 /* WinSock DLL. */
 return;
}

/* Confirm that the WinSock DLL supports 2.2.*/
/* Note that if the DLL supports versions greater */
/* than 2.2 in addition to 2.2, it will still return */
/* 2.2 in wVersion since that is the version we */
/* requested. */

if (LOBYTE(wsaData.wVersion) != 2 ||
 HIBYTE(wsaData.wVersion) != 2) {
 /* Tell the user that we could not find a usable */
 /* WinSock DLL. */
 WSACleanup();
 return;
}

/* The WinSock DLL is acceptable. Proceed. */

Once an application or DLL has made a successful WSAStartup call, it can proceed to
make other Windows Sockets calls as needed. When it has finished using the services of
the WS2_32.DLL, the application or DLL must call WSACleanup to allow the
WS2_32.DLL to free any resources for the application.

Details of the actual Windows Sockets implementation are described in the WSADATA
structure.

An application or DLL can call WSAStartup more than once if it needs to obtain the
WSADATA structure information more than once. On each such call the application can
specify any version number supported by the DLL.

An application must call one WSACleanup call for every successful WSAStartup call
to allow third-party DLLs to make use of a WS2_32.DLL on behalf of an application.

Network Programming Part I 7

This means, for example, that if an application calls WSAStartup three times, it must
call WSACleanup three times. The first two calls to WSACleanup do nothing except
decrement an internal counter; the final WSACleanup call for the task does all necessary
resource deallocation for the task.

WinSock version: high-order byte specifies the minor version (revision) number; the low-
order byte specifies the major version number.

Summary
 Socket is important in an inter-process communication. Sockets are more reliable
and secure. Socket version 2 is used these days. In windows, sockets are started using
WSAStartup API. WSAStartup API starts and initializes Windows Sockets. Domain
Name System (DNS), the locator service of choice in Microsoft® Windows®, is an
industry-standard protocol that locates computers on an IP-based network.

Exercises
1. Study internet protocols yourself.

Chapter 28

28.1 WINSOCK SERVER SOCKET FUNCTIONS 2
BIND 2
SOCKADDR 4
GETHOSTBYNAME 4
CONNECT 6
28.2 SENDING OR RECEIVING FROM SERVER 8
SEND 8
RECV 9
28.3 DIFFERENCE BETWEEN SERVER AND CLIENT SOCKET CALLS 11
28.4 LISTEN 12
28.5 ACCEPT 12
28.6 WINSOCK EXAMPLE APPLICATION 13
28.7 EXAMPLE APPLICATION 14
SUMMARY 17
EXERCISES 17

Network Programming Part II

2

28.1 WinSock Server Socket Functions

Bind:

The bind function associates a local address with a socket.

int bind(
 SOCKET s, //socket descriptor */
 const struct sockaddr* name, /* sockaddr structure */ /*read the

compatibility problem statements by the use of IPv4 and IPv6*/
/*connect Virtual University resource for the updated IPv6
informations*/

 int namelen
);

s: Descriptor identifying an unbound socket.
name: Address to assign to the socket from the sockaddr structure.
namelen: Length of the value in the name parameter, in bytes.

Return Value: If no error occurs, bind returns zero. Otherwise, it returns
SOCKET_ERROR, and a specific error code can be retrieved by calling
WSAGetLastError.

Error code Meaning

WSANOTINITIALISED A successful WSAStartup call must occur before
using this function.

WSAENETDOWN The network subsystem has failed.

WSAEACCES
Attempt to connect datagram socket to broadcast
address failed because setsockopt option
SO_BROADCAST is not enabled.

WSAEADDRINUSE

A process on the computer is already bound to the
same fully-qualified address and the socket has not
been marked to allow address reuse with
SO_REUSEADDR. For example, the IP address and
port are bound in the af_inet case). (See the
SO_REUSEADDR socket option under setsockopt.)

WSAEADDRNOTAVAIL The specified address is not a valid address for this
computer.

WSAEFAULT

The name or namelen parameter is not a valid part of
the user address space, the namelen parameter is too
small, the name parameter contains an incorrect
address format for the associated address family, or
the first two bytes of the memory block specified by

Network Programming Part II

3

name does not match the address family associated
with the socket descriptor s.

WSAEINPROGRESS
A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

WSAEINVAL The socket is already bound to an address.
WSAENOBUFS Not enough buffers available, too many connections.
WSAENOTSOCK The descriptor is not a socket.

The bind function is used on an unconnected socket before subsequent calls to connect
or listen functions. It is used to bind to either connection-oriented (stream) or
connectionless (datagram) sockets. When a socket is created with a call to the socket
function, it exists in a namespace (address family), but it has no name assigned to it. Use
the bind function to establish the local association of the socket by assigning a local
name to an unnamed socket.

A name consists of three parts when using the Internet address family:

• The address family.
• A host addresses.
• A port number that identifies the application.

In Windows Sockets 2, the name parameter is not strictly interpreted as a pointer to a
sockaddr structure. It is cast this way for Windows Sockets 1.1 compatibility. Service
providers are free to regard it as a pointer to a block of memory of size namelen. The first
2 bytes in this block (corresponding to the sa_family member of the sockaddr structure)
must contain the address family that was used to create the socket. Otherwise, an error
WSAEFAULT occurs.

If an application does not care what local address is assigned, specify the manifest
constant value ADDR_ANY for the sa_data member of the name parameter. This allows
the underlying service provider to use any appropriate network address, potentially
simplifying application programming in the presence of multihomed hosts (that is, hosts
that have more than one network interface and address).

For TCP/IP, if the port is specified as zero, the service provider assigns a unique port to
the application with a value between 1024 and 5000. The application can use
getsockname after calling bind to learn the address and the port that has been assigned to
it. If the Internet address is equal to INADDR_ANY, getsockname cannot necessarily
supply the address until the socket is connected, since several addresses can be valid if
the host is multihomed. Binding to a specific port number other than port 0 is discouraged
for client applications, since there is a danger of conflicting with another socket already
using that port number.

Network Programming Part II

4

Note When using bind with the SO_EXCLUSIVEADDR or SO_REUSEADDR socket
option, the socket option must be set prior to executing bind to have any affect.

Sockaddr

The sockaddr structure varies depending on the protocol selected. Except for the
sa_family parameter, sockaddr contents are expressed in network byte order.

In Windows Sockets 2, the name parameter is not strictly interpreted as a pointer to a
sockaddr structure. It is presented in this manner for Windows Sockets compatibility. The
actual structure is interpreted differently in the context of different address families. The
only requirements are that the first u_short is the address family and the total size of the
memory buffer in bytes is namelen.

The structures below are used with IPv4 and IPv6, respectively. Other protocols use
similar structures.

struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};
struct sockaddr_in6 {
 short sin6_family;
 u_short sin6_port;
 u_long sin6_flowinfo;
 struct in6_addr sin6_addr;
 u_long sin6_scope_id;
};
struct sockaddr_in6_old {
 short sin6_family;
 u_short sin6_port;
 u_long sin6_flowinfo;
 struct in6_addr sin6_addr;
};

Host and network byte-ordering: htonl(), htons(), ntohl(), ntohs()

gethostbyname

The gethostbyname function retrieves host information corresponding to a host name
from a host database.

struct hostent* FAR gethostbyname(
 const char* name
);

Network Programming Part II

5

name: Pointer to the null-terminated name of the host to resolve.

Return Value: If no error occurs, gethostbyname returns a pointer to the hostent
structure described above. Otherwise, it returns a null pointer and a specific error number
can be retrieved by calling WSAGetLastError.

Error code Meaning

WSANOTINITIALISED A successful WSAStartup call must occur before
using this function.

WSAENETDOWN The network subsystem has failed.
WSAHOST_NOT_FOUND Authoritative answer host not found.
WSATRY_AGAIN Nonauthoritative host not found, or server failure.
WSANO_RECOVERY A nonrecoverable error occurred.
WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS
A blocking Windows Sockets 1.1 call is in progress,
or the service provider is still processing a callback
function.

WSAEFAULT The name parameter is not a valid part of the user
address space.

WSAEINTR A blocking Windows Socket 1.1 call was canceled
through WSACancelBlockingCall.

The gethostbyname function returns a pointer to a hostent structure—a structure
allocated by Windows Sockets. The hostent structure contains the results of a successful
search for the host specified in the name parameter.

The application must never attempt to modify this structure or to free any of its
components. Furthermore, only one copy of this structure is allocated per thread, so the
application should copy any information it needs before issuing any other Windows
Sockets function calls.

The gethostbyname function cannot resolve IP address strings passed to it. Such a
request is treated exactly as if an unknown host name were passed. Use inet_addr to
convert an IP address string the string to an actual IP address, then use another function,
gethostbyaddr, to obtain the contents of the hostent structure.

If null is provided in the name parameter, the returned string is the same as the string
returned by a successful gethostname function call.

Note: The gethostbyname function does not check the size of the name parameter before
passing the buffer. In improperly sized name parameters, heap corruption can occur.

Network Programming Part II

6

Connect

The connect function establishes a connection to a specified socket.

int connect(
 SOCKET s,
 const struct sockaddr* name,
 int namelen
);

s: Descriptor identifying an unconnected socket.

name: Name of the socket in the sockaddr structure to which the connection should be
established.

namelen: Length of name, in bytes

Return Values: If no error occurs, connect returns zero. Otherwise, it returns
SOCKET_ERROR, and a specific error code can be retrieved by calling
WSAGetLastError.

On a blocking socket, the return value indicates success or failure of the connection
attempt.

With a nonblocking socket, the connection attempt cannot be completed immediately. In
this case, connect will return SOCKET_ERROR, and WSAGetLastError will return
WSAEWOULDBLOCK. In this case, there are three possible scenarios:

 Use the select function to determine the completion of the connection request by
checking to see if the socket is writeable.

 If the application is using WSAAsyncSelect to indicate interest in connection
events, then the application will receive an FD_CONNECT notification indicating
that the connect operation is complete (successfully or not).

 If the application is using WSAEventSelect to indicate interest in connection
events, then the associated event object will be signaled indicating that the
connect operation is complete (successfully or not).

Until the connection attempt completes on a nonblocking socket, all subsequent calls to
connect on the same socket will fail with the error code WSAEALREADY, and
WSAEISCONN when the connection completes successfully. Due to ambiguities in
version 1.1 of the Windows Sockets specification, error codes returned from connect
while a connection is already pending may vary among implementations. As a result, it is
not recommended that applications use multiple calls to connect to detect connection
completion. If they do, they must be prepared to handle WSAEINVAL and
WSAEWOULDBLOCK error values the same way that they handle WSAEALREADY,
to assure robust execution.

Network Programming Part II

7

The connect function is used to create a connection to the specified destination. If socket
s, is unbound, unique values are assigned to the local association by the system, and the
socket is marked as bound.

For connection-oriented sockets (for example, type SOCK_STREAM), an active
connection is initiated to the foreign host using name (an address in the namespace of the
socket.

Note: If a socket is opened, a setsockopt call is made, and then a sendto call is made,
Windows Sockets performs an implicit bind function call.

When the socket call completes successfully, the socket is ready to send and receive data.
If the address member of the structure specified by the name parameter is all zeroes,
connect will return the error WSAEADDRNOTAVAIL. Any attempt to reconnect an
active connection will fail with the error code WSAEISCONN.

For connection-oriented, nonblocking sockets, it is often not possible to complete the
connection immediately. In such a case, this function returns the error
WSAEWOULDBLOCK. However, the operation proceeds.

When the success or failure outcome becomes known, it may be reported in one of two
ways, depending on how the client registers for notification.

 If the client uses the select function, success is reported in the writefds set and
failure is reported in the exceptfds set.

 If the client uses the functions WSAAsyncSelect or WSAEventSelect, the
notification is announced with FD_CONNECT and the error code associated
with the FD_CONNECT indicates either success or a specific reason for
failure.

For a connectionless socket (for example, type SOCK_DGRAM), the operation
performed by connect is merely to establish a default destination address that can be used
on subsequent send/ WSASend and recv/ WSARecv calls. Any datagrams received from
an address other than the destination address specified will be discarded. If the address
member of the structure specified by name is all zeroes, the socket will be disconnected.
Then, the default remote address will be indeterminate, so send/ WSASend and recv/
WSARecv calls will return the error code WSAENOTCONN. However, sendto/
WSASendTo and recvfrom/ WSARecvFrom can still be used. The default destination
can be changed by simply calling connect again, even if the socket is already connected.
Any datagrams queued for receipt are discarded if name is different from the previous
connect.

For connectionless sockets, name can indicate any valid address, including a broadcast
address. However, to connect to a broadcast address, a socket must use setsockopt to
enable the SO_BROADCAST option. Otherwise, connect will fail with the error code
WSAEACCES.

Network Programming Part II

8

When a connection between sockets is broken, the sockets should be discarded and
recreated. When a problem develops on a connected socket, the application must discard
and recreate the needed sockets in order to return to a stable point.

28.2 Sending or receiving from server

Send

The send function sends data on a connected socket.

int send(
 SOCKET s,
 const char* buf,
 int len,
 int flags
);

s: Descriptor identifying a connected socket.
buf: Buffer containing the data to be transmitted.
len: Length of the data in buf, in bytes
flags: Indicator specifying the way in which the call is made.

Return Values: If no error occurs, send returns the total number of bytes sent, which can
be less than the number indicated by len. Otherwise, a value of SOCKET_ERROR is
returned

The send function is used to write outgoing data on a connected socket. For message-
oriented sockets, care must be taken not to exceed the maximum packet size of the
underlying provider, which can be obtained by using getsockopt to retrieve the value of
socket option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through
the underlying protocol, the error WSAEMSGSIZE is returned, and no data is
transmitted.

The successful completion of a send does not indicate that the data was successfully
delivered.

If no buffer space is available within the transport system to hold the data to be
transmitted, send will block unless the socket has been placed in nonblocking mode. On
nonblocking stream oriented sockets, the number of bytes written can be between 1 and
the requested length, depending on buffer availability on both client and server
computers. The select, WSAAsyncSelect or WSAEventSelect functions can be used to
determine when it is possible to send more data.

Calling send with a zero len parameter is permissible and will be treated by
implementations as successful. In such cases, send will return zero as a valid value. For
message-oriented sockets, a zero-length transport datagram is sent.

Network Programming Part II

9

The flags parameter can be used to influence the behavior of the function beyond the
options specified for the associated socket. The semantics of this function are determined
by the socket options and the flags parameter. The latter is constructed by using the
bitwise OR operator with any of the following values.

Value Meaning

MSG_DONTROUTE Specifies that the data should not be subject to routing. A
Windows Sockets service provider can choose to ignore this flag.

MSG_OOB
Sends OOB data (stream-style socket such as SOCK_STREAM
only. Also see DECnet Out-Of-band data for a discussion of this
topic).

Recv

The recv function receives data from a connected or bound socket.

int recv(
 SOCKET s,
 char* buf,
 int len,
 int flags
);

s: Descriptor identifying a connected socket.
buf: Buffer for the incoming data.
len: Length of buf, in bytes
flags: Flag specifying the way in which the call is made.

Return Values: If no error occurs, recv returns the number of bytes received. If the
connection has been gracefully closed, the return value is zero. Otherwise, a value of
SOCKET_ERROR is returned,

The recv function is used to read incoming data on connection-oriented sockets, or
connectionless sockets. When using a connection-oriented protocol, the sockets must be
connected before calling recv. When using a connectionless protocol, the sockets must be
bound before calling recv.

The local address of the socket must be known. For server applications, use an explicit
bind function or an implicit accept or WSAAccept function. Explicit binding is
discouraged for client applications. For client applications, the socket can become bound
implicitly to a local address using connect, WSAConnect, sendto, WSASendTo, or
WSAJoinLeaf.

For connected or connectionless sockets, the recv function restricts the addresses from
which received messages are accepted. The function only returns messages from the

Network Programming Part II

10

remote address specified in the connection. Messages from other addresses are (silently)
discarded.

For connection-oriented sockets (type SOCK_STREAM for example), calling recv will
return as much information as is currently available—up to the size of the buffer
specified. If the socket has been configured for in-line reception of OOB data (socket
option SO_OOBINLINE) and OOB data is yet unread, only OOB data will be returned.
The application can use the ioctlsocket or WSAIoctl SIOCATMARK command to
determine whether any more OOB data remains to be read.

For connectionless sockets (type SOCK_DGRAM or other message-oriented sockets),
data is extracted from the first enqueued datagram (message) from the destination address
specified by the connect function.

If the datagram or message is larger than the buffer specified, the buffer is filled with the
first part of the datagram, and recv generates the error WSAEMSGSIZE. For unreliable
protocols (for example, UDP) the excess data is lost; for reliable protocols, the data is
retained by the service provider until it is successfully read by calling recv with a large
enough buffer.

If the socket is connection oriented and the remote side has shut down the connection
gracefully, and all data has been received, a recv will complete immediately with zero
bytes received. If the connection has been reset, a recv will fail with the error
WSAECONNRESET.

The flags parameter can be used to influence the behavior of the function invocation
beyond the options specified for the associated socket. The semantics of this function are
determined by the socket options and the flags parameter. The latter is constructed by
using the bitwise OR operator with any of the following values.

Value Meaning

MSG_PEEK

Peeks at the incoming data. The data is copied into the buffer but is not
removed from the input queue. The function subsequently returns the
amount of data that can be read in a single call to the recv (or recvfrom)
function, which may not be the same as the total amount of data queued on
the socket. The amount of data that can actually be read in a single call to
the recv (or recvfrom) function is limited to the data size written in the
send or sendto function call.

MSG_OOB Processes OOB data. (See DECnet Out-of-band data for a discussion of this
topic.)

Network Programming Part II

11

28.3 Difference between server and client socket calls

Figure 1 Client Connection

Figure 2 Server Connection

Socket()

Connect()

Send/recv()

closesocket

Socket()

bind()

Listen()

accept

Recv/send

closesocket

Network Programming Part II

12

28.4 Listen

The listen function places a socket in a state in which it is listening for an incoming
connection.

int listen(
 SOCKET s,
 int backlog
);

s: Descriptor identifying a bound, unconnected socket.

Backlog: Maximum length of the queue of pending connections. If set to
SOMAXCONN, the underlying service provider responsible for socket s will set the
backlog to a maximum reasonable value. There is no standard provision to obtain the
actual backlog value.

Return Values: If no error occurs, listen returns zero. Otherwise, a value of
SOCKET_ERROR is returned.

To accept connections, a socket is first created with the socket function and bound to a
local address with the bind function, a backlog for incoming connections is specified
with listen, and then the connections are accepted with the accept function. Sockets that
are connection oriented those of type SOCK_STREAM for example, are used with listen.
The socket s is put into passive mode where incoming connection requests are
acknowledged and queued pending acceptance by the process.

The listen function is typically used by servers that can have more than one connection
request at a time. If a connection request arrives and the queue is full, the client will
receive an error with an indication of WSAECONNREFUSED.

If there are no available socket descriptors, listen attempts to continue to function. If
descriptors become available, a later call to listen or accept will refill the queue to the
current or most recent backlog, if possible, and resume listening for incoming
connections.

An application can call listen more than once on the same socket. This has the effect of
updating the current backlog for the listening socket. Should there be more pending
connections than the new backlog value, the excess pending connections will be reset and
dropped.

28.5 Accept

The accept function permits an incoming connection attempt on a socket.

SOCKET accept(
 SOCKET s, /*socket descriptor*/

Network Programming Part II

13

 struct sockaddr* addr, /*sockaddr structure*/
 int* addrlen /*string length returned*/
);

s: Descriptor identifying a socket that has been placed in a listening state with the listen
function. The connection is actually made with the socket that is returned by accept.

addr: Optional pointer to a buffer that receives the address of the connecting entity, as
known to the communications layer. The exact format of the addr parameter is
determined by the address family that was established when the socket from the
sockaddr structure was created.

Addrlen: Optional pointer to an integer that contains the length of addr.

Return Values: If no error occurs, accept returns a value of type SOCKET that is a
descriptor for the new socket. This returned value is a handle for the socket on which the
actual connection is made. Otherwise, a value of INVALID_SOCKET is returned

The accept function extracts the first connection on the queue of pending connections on
socket s. It then creates and returns a handle to the new socket. The newly created socket
is the socket that will handle the actual connection; it has the same properties as socket s,
including the asynchronous events registered with the WSAAsyncSelect or
WSAEventSelect functions.

The accept function can block the caller until a connection is present if no pending
connections are present on the queue, and the socket is marked as blocking. If the socket
is marked as nonblocking and no pending connections are present on the queue, accept
returns an error as described in the following. After the successful completion of accept
returns a new socket handle, the accepted socket cannot be used to accept more
connections. The original socket remains open and listens for new connection requests.

The parameter addr is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact format of the addr
parameter is determined by the address family in which the communication is occurring.
The addrlen is a value-result parameter; it should initially contain the amount of space
pointed to by addr; on return it will contain the actual length (in bytes) of the address
returned.

The accept function is used with connection-oriented socket types such as
SOCK_STREAM. If addr and/or addrlen are equal to NULL, then no information about
the remote address of the accepted socket is returned.

28.6 WinSock Example Application

A client showing simple communication to either our own small server, or some server
on the internet, e.g. WHOIS servers, HTTP server, time service etc.

Network Programming Part II

14

A small utility that synchronizes system time with a source on the internet, accounting for
transmission-delays

Screen shot of our application.

28.7 Example Application

Int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
lpCmdLine, int nCmdShow)
{
 WSADATA wsaData;
 HOSTENT *ptrHostEnt;
 struct sockaddr_in serverSockAddr; // the address of the socket to connect to

 int abc;

 // try initialising the windows sockets library
 if(WSAStartup(MAKEWORD(1,1), &wsaData)) // request WinSock ver 1.1
 {
 MessageBox(NULL, "Error initialising sockets library.", "WinSock
Error", MB_OK | MB_ICONSTOP);
 return 1;
 }

/*Get host name */
if(!(ptrHostEnt = gethostbyname(WHOIS_SERVER_NAME)))
 {
 MessageBox(NULL, "Could not resolve WHOIS server name.",
"WinSock Error", MB_OK | MB_ICONSTOP);

Network Programming Part II

15

 WSACleanup();
 return 1;
 }

serverSockAddr.sin_family = AF_INET; // fill the address structure with appropriate
values
serverSockAddr.sin_port = htons(WHOIS_PORT); // MUST convert to network
byte-order
 memset(serverSockAddr.sin_zero, 0, sizeof(serverSockAddr.sin_zero));
 memcpy(&serverSockAddr.sin_addr.S_un.S_addr, ptrHostEnt->h_addr_list[0],
sizeof(unsigned long));

 clientSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 if(clientSocket == INVALID_SOCKET)
 {
 MessageBox(NULL, "Error creating client socket.", "WinSock Error",
MB_OK | MB_ICONSTOP);
 WSACleanup();
 return 1;
 }

/*Start Connection*/

if(connect(clientSocket, (struct sockaddr *)&serverSockAddr, sizeof(serverSockAddr)))
 {

 abc = WSAGetLastError();

 MessageBox(NULL, "Error connecting to WHOIS server.", "WinSock
Error", MB_OK | MB_ICONSTOP);
 WSACleanup();
 return 1;
 }

 if(DialogBox(hInstance, MAKEINTRESOURCE(IDD_DIALOG_MAIN),
NULL, mainDialogProc) == 1)
 MessageBox(NULL, "Error occurred while sending data to WHOIS
server.", "WinSock Error", MB_OK | MB_ICONSTOP);

 WSACleanup();

 return 0;
}

Network Programming Part II

16

BOOL CALLBACK mainDialogProc(HWND hDlg, UINT message, WPARAM
wParam, LPARAM lParam)
{
 int wID, wNotificationCode;
 char domainName[MAX_DOMAIN_LEN+2+1]; // accomodate CR/LF/NULL
 char result[BUFFER_SIZE], *startOfBuffer = result;
 int bytesReceived;

 switch(message)
 {
 case WM_INITDIALOG:
 SendDlgItemMessage(hDlg, IDC_EDIT_DOMAIN, EM_LIMITTEXT,
MAX_DOMAIN_LEN, 0);
 return TRUE;
 break;

 case WM_COMMAND:
 wNotificationCode = HIWORD(wParam);
 wID = LOWORD(wParam);
 switch(wID)
 {
case IDC_BUTTON_SEND:
 EnableWindow(GetDlgItem(hDlg, IDC_BUTTON_SEND),
FALSE); // disable for 2nd use
 GetDlgItemText(hDlg, IDC_EDIT_DOMAIN,
(LPSTR)domainName, MAX_DOMAIN_LEN+1);
 strcpy(domainName+strlen(domainName), "\r\n");
 if(send(clientSocket, (const char *)domainName,
strlen(domainName), 0) == SOCKET_ERROR)
 EndDialog(hDlg, 1);
 else
 {

bytesReceived = recv(clientSocket, startOfBuffer,
BUFFER_SIZE-1, 0); // -1 for NULL
while(bytesReceived > 0)// 0:close

//SOCKET_ERROR:error
 {
 startOfBuffer += bytesReceived; //
//move it forward
bytesReceived = recv(clientSocket, startOfBuffer,
BUFFER_SIZE-(startOfBuffer-result)-1, 0); // -1 for NULL

 }

 if(startOfBuffer != result) // something received
 *startOfBuffer = NULL; // NULL terminate

Network Programming Part II

17

 else
 strcpy(result, "Null Response");

 SetDlgItemText(hDlg, IDC_EDIT_RESULT, result);
 }

 break;

 case IDCANCEL:
 EndDialog(hDlg, 0);
 break;
 }
 return TRUE;
 break;

 default:
 return FALSE;
 }
 return TRUE;
}

Summary
 In this lecture, we studied about WinSock functions. These functions include
connect, recv, send, accept, bind, gethotbyname, etc. we saw the difference between
client socket connection and server socket connection. And finally we made application
that is whoisserver. This application tells that the name is registered name or not. If the
name is registered, then we cannot register it again.

Note: These lectures explain only IPv4, this protocol is being replaced by IPv6. New
resource should use IPv6. For New Internet Protocol version and programming using
IPv6, connect to Virtual University resource online.

Exercises
1. Create a simple socket client server application that uses stream socket and

TCP/IP protocols. On connecting, the client server must show message that client
has been connected.

Chapter 29

29.1 LECTURE GOAL 2
29.2 UNIFORM RESOURCE LOCATOR (URL) 2
29.3 HTML 2
29.4 WEB BROWSER 2
29.5 HTTP 3
29.6 MIME 3
29.7 RFC 3
29.8 ENCODING AND DECODING 3
29.9 ENCODING EXAMPLE ESCAPE SEQUENCE 3
29.10 VIRTUAL DIRECTORY 4
29.11 WEB BROWSER FETCHES A PAGES 4
29.12 HTTP CLIENT REQUEST 4
29.13 FILE EXTENSION AND MIME 5
29.14 MIME ENCODING 6
29.15 HTTP STATUS CODES 6
29.16 HTTP REDIRECTION 6
29.17 HTTP REQUEST PER 1 TCP/IP CONNECTION 6
29.18 SERVER ARCHITECTURE 7
SUMMARY 7
EXERCISES 7

Network Programming Part III 2

29.1 Lecture Goal

This lecture goal is to develop a little Web Server.
This Web Server will serve HTTP requests, sent via a Web Browser using following
URLs:

http://www.vu.edu.pk/default.html
http://www.vu.edu.pk/index.asp
http://www.vu.edu.pk/win32.html
http://www.vu.edu.pk/courses/win32.html

29.2 Uniform Resource Locator (URL)

Anatomy of a URL (Uniform Resource Locator):
http://www.vu.edu.pk/courses/win32.html
http:// protocol
www.vu.edu.pk Web Server

courses/win32.html location of file on server

Or http://www.vu.edu.pk:80/.../....

:80 is the specifies Port Number to use for connection

29.3 HTML

HTML stands for Hyper Text Mark-up Language.
This language contains text-formatting information e.g. font faces, font colors, font sizes,
alignment etc. and also contains HyperLinks: text that can be clicked to go to another
HTML document on the Internet. HTML tags are embedded within normal text to make
it hypertext.

29.4 Web Browser

HTTP Client – Web Browser examples are:
Microsoft Internet Explorer
Netscape Navigator

These web servers connect to your HTTP web server, requests a document, and displays
in its window

Network Programming Part III 3

29.5 HTTP

HTTP is a Stateless protocol.

• No information or “state” is maintained about previous HTTP requests
• Easier to implement than state-aware protocols

29.6 MIME

MIME stands for Multi-purpose Internet Mail Extensions.

MIME contains encoding features, added to enable transfer of binary data, e.g. images
(GIF, JPEG etc.) via mail. Using MIME encoding HTTP can now transfer complex
binary data, e.g. images and video.

29.7 RFC

Short for Request for Comments, a series of notes about the Internet, started in 1969
(when the Internet was the ARPANET). An Internet Document can be submitted to the
IETF by anyone, but the IETF decides if the document becomes an RFC. Eventually, if it
gains enough interest, it may evolve into an Internet standard.
HTTP version 1.1 is derived from HTTP/1.1, Internet RFC 2616, Fielding, et al. Each
RFC is designated by an RFC number. Once published, an RFC never changes.
Modifications to an original RFC are assigned a new RFC number.

29.8 Encoding and Decoding

HTTP is a Text Transport Protocol
Transferring binary data over HTTP needs Data Encoding and Decoding because binary
characters are not permitted Similarly some characters are not permitted in a URL, e.g.
SPACE. Here, URL encoding is used

29.9 Encoding Example Escape Sequence

Including a Carriage Return / Line feed in a string
printf(“Line One\nThis is new line”);

Including a character in a string not found on our normal keyboards
printf(“The funny character \xB2”);

Network Programming Part III 4

29.10 Virtual Directory

Represents the Home Directory of a Web Server

IIS (Internet Information Server) has c:\inetpub\wwwroot\ as its default Home Directory

Here, /courses/ either corresponds to a Physical Directory c:\inetpub\wwwroot\courses
OR Virtual Directoy

In a Web Server, we may specify that /courses/ will represent some other physical
directory on the Web Server like D:\MyWeb\. Then /courses/ will be a Virtual Directory.
In Windows2000 and IIS 5.0 (Internet Information Server), a folder’s “Web Sharing…”
is used to create a Virtual Directory for any folder.

29.11 Web Browser Fetches a pages

• http://www.vu.edu.pk/courses/win32.html

• Hostname/DNS lookup for www.vu.edu.pk to get IP address
• HTTP protocol uses port 80.
• Connect to port 80 of the IP address discovered above!

• Request the server for /courses/win32.html

29.12 HTTP Client Request

GET /courses/win32.html HTTP/1.0

Method Resource
Identifier

HTTP
Version

Crlf

Crlf

Network Programming Part III 5

Request line is followed by 2 Carriage-Return /Line-feed sequences

HTTP/1.1 200 OK }Status Line

Content-type: text/html
Content-Length:2061 Headers delimited by CR/LF sequence

Crlf

Actual data follows the headers

29.13 File Extension and MIME

File extensions are non-standard across different platforms and cannot be used to
determine the type of contents of any file.

Different common MIME types

image/gif GIF image
image/jpeg JPEG image
text/html HTML document
text/plain plain text

In an HTTP response, a Web Server tells the browser MIME type of data being sent

MIME type is used by the browser to handle the data appropriately i.e. show an image,
display HTML etc.

MIME:

MIME: Multi-purpose Internet Mail Extensions �MIME Encoding features were added
to enable transfer of binary data, e.g. images (GIF, JPEG etc.) via mail. Using MIME
encoding HTTP can now transfer complex binary data, e.g. images and video

HTTP version Status Code Description

Network Programming Part III 6

29.14 MIME Encoding

MIME: Short for Multipurpose Internet Mail Extensions, a specification for formatting
non-ASCII messages so that they can be sent over the Internet.

Enables us to send and receive graphics, audio, and video files via the Internet mail
system.

There are many predefined MIME types, such as GIF graphics files and PostScript files.
It is also possible to define your own MIME types.

In addition to e-mail applications, Web browsers also support various MIME types. This
enables the browser to display or output files that are not in HTML format.

MIME was defined in 1992 by the Internet Engineering Task Force (IETF). A new
version, called S/MIME, supports encrypted messages.

29.15 HTTP Status codes

404 Not Found
 - requested document not found on this server
200 OK
 - request secceeded, requested object later in this message
400 Bad Request
 - request message not understood by server
302 Object Moved
 - requested document has been moved to some other location

29.16 HTTP Redirection

HTTP/1.1 302 Object Moved
Location: http://www.vu.edu.pk

crlf

Most browsers will send another HTTP request to the new location, i.e.
http://www.vu.edu.pk
This is called Browser Redirection

29.17 HTTP Request per 1 TCP/IP Connection

HTML text is received in one HTTP request from the Web Server

Network Programming Part III 7

Browser reads all the HTML web page and paints its client area according to the HTML
tags specified. Browser generates one fresh HTTP request for each image specified in the
HTML file

29.18 Server Architecture

Our server architecture will be based upon the following points

• Ability to serve up to 5 clients simultaneously
• Multi-threaded HTTP Web Server
• 1 thread dedicated to accept client connections
• 1 thread per client to serve HTTP requests
• 1 thread dedicated to perform termination housekeeping of communication

threads
• Use of Synchronization Objects

Many WinSock function calls e.g. accept() are blocking calls
Server needs to serve up 5 clients simultaneously. Using other WinSock blocking calls,
need to perform termination tasks for asynchronously terminating communication
threads.

Summary
 In this lecture, we studied some terms and their jobs. We studied HTTP (hyper
text transfer protocol) which is used to transfer text data across the net work. We also
studied HTML that is hyper text markup language which is simply a text script. Html is
loaded in web browser and web browser translates the text and executes instruction
written in form of text. For transferring media like image data and movie data, we
overviewed MIME.

Note: For example and more information connect to Virtual University resource Online.

Exercises
1. Create a chat application. Using that application, you should be able to chat with

your friend on network.

Chapter 30

30.1 SERVER ARCHITECTURE 2
30.2 HTTP WEB SERVER APPLICATION 2
30.3 VARIABLE INITIALIZATION 7
30.4 INITIALIZE WINSOCK LIBRARY 7
30.5 WIN32 ERROR CODES 7
30.6 HTTP WEB SERVER APPLICATION 7
SUMMARY 13
EXERCISES 13

Network Programming Part IV 2

30.1 Server Architecture

Server architecture will be based on:

• Dialog-based GUI application
• Most of the processing is at back-end
• Running on TCP port 5432 decimal

30.2 HTTP Web Server Application

Initialize Windows Sockets Library

if(WSAStartup(MAKEWORD(1,1), &wsaData))
{
 … … …
 return 1;
}

//Get machine’s hostname and IP address

gethostname(hostName, sizeof(hostName));
ptrHostEnt = gethostbyname(hostName);

//Fill the socket address with appropriate values

serverSocketAddress.sin_family = AF_INET;
serverSocketAddress.sin_port = htons(SERVER_PORT);
… … …
memcpy(&serverSocketAddress.sin_addr.S_un.S_addr, ptrHostEnt->h_addr_list[0],
sizeof(unsigned long));

Create the server socket

serverSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if(serverSocket == INVALID_SOCKET)
{
 … … …
 WSACleanup();
 return 1;
}

Network Programming Part IV 3

Bind the socket

if(bind(serverSocket, (struct sockaddr *)&serverSocketAddress,
sizeof(serverSocketAddress)))
{
 … … …
 WSACleanup();
 return 1;
}

Put the socket in listening mode

if(listen(serverSocket, MAX_PENDING_CONNECTIONS))
{
 … … …
 WSACleanup();
 return 1;
}

Here is the time to accept client connections

Create a thread that will call accept() in a loop to accept multiple client connections

hAcceptingThread = CreateThread(
 NULL,
 0,
 (LPTHREAD_START_ROUTINE)
 acceptClientConnections,
 NULL,
 CREATE_SUSPENDED,
 &dwAcceptingThread);

Create a thread to do termination house-keeping when some communication thread
terminates.

hTerminatingThread = CreateThread(
 NULL,
 0,
 (LPTHREAD_START_ROUTINE)
 terminateCommunicationThreads,
 NULL,
 CREATE_SUSPENDED,
 &dwTerminatingTThread);

Network Programming Part IV 4

Accept Client Connection (Thread Routine)

Terminate communication threads (thread routine)

accept()

Create a new
communication thread:

serveClient
serveClient

Client Socket Descriptor
The newly generated
“Communication Thread”
(discussed later)

Wait for some thread
termination event

Wait for thread
object to go
signalled

Close thread handle;
Destroy its relevant
stored data;

Network Programming Part IV 5

Application Variables and constants

#define MAX_CLIENTS 5
SOCKET clientSockets[MAX_CLIENTS];

HANDLE hCommunicationThreads[MAX_CLIENTS];
DWORD dwCommunicationThreads[MAX_CLIENTS];

HANDLE hAcceptingThread;
DWORD dwAcceptingThread;

HANDLE hTerminatingThread;
DWORD dwTerminatingTThread;

servClient Communication thread routine

HTTP request served
going to disconnect the client

Set an Event object to indicate termination

Communicate with client to receive/serve its HTTP request
Use recv() / send() blocking WinSock API calls

Gracefully shutdown and Close client socket

Network Programming Part IV 6

terminateCommunicationThreads thread routine

Thread Procedures Summary

acceptClientConnections
 - to accept client connection
•terminateCommunicationThreads
• - to do housekeeping when communication threads terminate
•serveClient
 - to do actual communication to receive and serve an HTTP request

30.1 Server Shut down user interface

Wait for ANY thread termination event
WaitForMultipleObjects(…, hEventsThreadTermination,…);

Wait for thread routine to finish (its object will get signalled)
WaitForSingleObject(hCommunicationThreads[i], …);

Close thread handle; Make it NULL; Set its socket to invalid
ReleaseSemaphore();

At least one thread sets its
termination event

The thread function has actually finished

Network Programming Part IV 7

30.3 Variable Initialization

for(i=0; i<MAX_CLIENTS; ++i)
{
 clientSockets[i] = INVALID_SOCKET;

 hCommunicationThreads[i] = NULL;
 dwCommunicationThreads[i] = 0;
 hEventsThreadTermination[i] = NULL;
}

30.4 Initialize WinSock Library

if(WSAStartup(MAKEWORD(1,1), &wsaData))
{
 MessageBox(NULL,
 "Error initialising sockets library.",
 "WinSock Error",
 MB_OK | MB_ICONSTOP);
 return 1;
}

30.5 Win32 Error Codes

int WSAGetLastError(void);
 - get error code for the last unsuccessful Windows Sockets operation

DWORD GetLastError(VOID);
 - retrieve calling threads last-error code

30.6 HTTP Web Server Application

Get machine’s hostname and IP address

gethostname(hostName, sizeof(hostName));
ptrHostEnt = gethostbyname(hostName);
Fill the socket address with appropriate values
serverSocketAddress.sin_family = AF_INET;
serverSocketAddress.sin_port = htons(SERVER_PORT);
… … …
memcpy(&serverSocketAddress.sin_addr.S_un.S_addr,
ptrHostEnt->h_addr_list[0], sizeof(unsigned long));

Network Programming Part IV 8

Create the server socket

serverSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if(serverSocket == INVALID_SOCKET)
{
 … … …
 WSACleanup();
 return 1;
}

Bind the socket

if(bind(serverSocket,(struct sockaddr *)&serverSocketAddress,
sizeof(serverSocketAddress)))
{
 … … …
 WSACleanup();
 return 1;
}

Put the socket in listening mode

if(listen(serverSocket, MAX_PENDING_CONNECTIONS))
{
 … … …
 SACleanup();
 return 1;
}

Here is the time to accept client connections

Limiting Maximum Concurrent connections

Create an unnamed semaphore object with MAX_CLIENTS as initial/maximum count

hSemaphoreMaxClients = CreateSemaphore(NULL,
MAX_CLIENTS,
MAX_CLIENTS, NULL
);

“I am dying…”, the thread said

Create an array of non-signalled event objects

for(i=0; i<MAX_CLIENTS; i++)

Network Programming Part IV 9

 hEventsThreadTermination[i] = CreateEvent(NULL, FALSE, FALSE, NULL);

Create the connection-accepting thread

hAcceptingThread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)
acceptClientConnections, NULL, CREATE_SUSPENDED, &dwAcceptingThread);

Create the termination house-keeping thread

hTerminatingThread = CreateThread(… … …);

Display the dialog

DialogBox(…, …, …, mainDialogProc);

Main Dialog Proc

case WM_INITDIALOG:
ResumeThread(hAcceptingThread);
ResumeThread(hTerminatingThread);
return TRUE;
break;

Handling the server shut-down button

case IDC_BUTTON_SHUTDOWN:
//Perform any shut-down tasks that my be necessary
EndDialog(hDlg, 0);
break;

Accept Client Connections Thread Routine

Start of the loop to accept client connections Wait for semaphore count to go non-zero

dwWaitResult = WaitForSingleObject(
hSemaphoreMaxClients, INFINITE);

switch(dwWaitResult)
{
case WAIT_OBJECT_0:
We can accept more connections here because semaphore object is signaled
clientSocket = accept(… … …);

clientSocket = accept(… … …);

Network Programming Part IV 10

Connection accepted! Look for the first empty slot to save the new socket descriptor

for(i=0; i<MAX_CLIENTS; i++)
{
 if(clientSockets[i] == INVALID_SOCKET)
 break;
}

nextClientIndex = i;
clientSockets[nextClientIndex]=clientSocket;

nextClientIndex is used as an index in ALL arrays to store information relevant to this
new client connection

clientSockets[nextClientIndex]=clientSocket;

hCommunicationThreads[nextClientIndex] = CreateThread(…, …, serveClient,
//thread procedure
(LPVOID)nextClientIndex, thread parameter
CREATE_SUSPENDED,
…);

Index for this client in all arrays is passed to this thread routine

DWORD WINAPI serveClient(LPVOID clientNumber)
{
char msg[2046] = "";

Receiving an HTTP request from browser
recv(clientSockets[(UINT)clientNumber], msg,2046,0);

//nextClientIndex is used as an index in ALL arrays to store information relevant to this
//new client connection

clientSockets[nextClientIndex]=clientSocket;

hCommunicationThreads[nextClientIndex] = CreateThread(…, …, serveClient,
(LPVOID)nextClientIndex,thread parameter, CREATE_SUSPENDED,…);

Sample Request

Request parsing: understanding what the client has demanded GET /courses/win32.html
HTTP/1.0
Assume F:\ is your server’s home directory, and \courses\is not a virtual directory, server
should return the file
F:\courses\win32.html

Network Programming Part IV 11

HTTP Redirection
Redirecting the client irrespective of the HTTP request!

The string in the #define directive is assumed to be on a single line
#define RESPONSE
"HTTP/1.1 302 Object Moved\r\n
Location: http://www.vu.edu.pk\r\n\r\n"

Sending the hard-coded HTTP response back to browser

send(clientSockets[(UINT)clientNumber],
RESPONSE,
sizeof(RESPONSE),
0);

Using Port Numbers

There is no compulsion to build all HTTP Web Servers to run on port 80. These are
‘suggested’ port numbers for a Win32 developer
Standard servers do run on port 80. Our HTTP Web Server may also need to run on port
80 if put it to public use

Returning HTML Document

#define directive is assumed to be on a single line
#define RESPONSE "HTTP/1.0 200 OK\r\n

Content-type: text/html\r\n
Content-length: 1325\r\n\r\n"
Send the hard-coded HTTP status and headers

send(clientSockets[(UINT)clientNumber], RESPONSE, sizeof(RESPONSE), 0);
//Now sends the whole file using character I/O of standard C runtime
ch = fgetc(fptr);
while(!feof(fptr)) {
send(clientSockets[(UINT)clientNumber], &ch, 1, 0);
ch = fgetc(fptr);
}

terminateCommunicationThreads thread routine

Wait for some thread to set a termination event

dwWaitResult = WaitForMultipleObjects(MAX_CLIENTS, hEventsThreadTermination,
FALSE, INFINITE);
//Get the array index

Network Programming Part IV 12

threadIndex = dwWaitResult - WAIT_OBJECT_0;
//Wait for the thread to actually terminate

WaitForSingleObject(hCommunicationThreads[threadIndex], INFINITE);
Close handles and set variables to initial values again

CloseHandle(hCommunicationThreads[threadIndex]);
hCommunicationThreads[threadIndex] = NULL;
clientSockets[threadIndex] = INVALID_SOCKET;

//Resource freed, increase the semaphore value

ReleaseSemaphore(hSemaphoreMaxClients, 1, NULL);

A Flawed Web Server

Fixed sized arrays waste memory and lack run-time flexibility One event per thread to
signify termination: WaitForMultipleObjects cannot wait on more than a certain number
of objects e.g. 64 on x86 under NT.

Dynamic Web Content

Server blindly dumps HTML files to the clients. This is ‘static content’.

Server reads file and modifies its output e.g.

%%time%% replaced with current system time
Every 2 clients connected at different instants of time will receive different content.
This is ‘dynamic content’.
%%time%% may be called a tag

Microsoft Active Server Pages
Macromedia ColdFusion
Tags are not sent to the client. These are processed by the server and the resulting output
is sent to the browser.

CGI

CGI is Common Gateway Interface. Win32 executable execute by the server. All browser
request data is available at stdin (read using scanf() etc.) and all output sent to stdout
(output using printf etc.) is sent to the browser instead of the server screen.

Network Programming Part IV 13

Summary
 In this lecture, we designed a web server which listens on port 80 and can receive
requests from the clients and send message to the client. Our server supports maximum
five clients at a time.

Note: For more on Windows Programming, connect to the Virtual University resource
online. Examples, source codes can be found online.

Exercises
1. Practice to create such applications as explained in this lecture and in previous

lectures with different ideas.

